
1

Developing Desktop

Applications

Livescribe™ Desktop SDK
Version 0.7.0

Copyright and Trademarks

LIVESCRIBE, PULSE, and PAPER REPLAY are trademarks or registered

trademarks of Livescribe, Inc. Anoto is a trademark of Anoto Group AB.

Microsoft and Microsoft Word are either registered trademarks or

trademarks of Microsoft Corporation in the United States or other

countries. MyScript is a registered trademark of Vision Objects, Inc. All

other brand and product names are trademarks of their respective

owners.

Copyright © 2007-2010 Livescribe, Inc. All rights reserved.

DevDesktopApps-0.7.0-DesktopSDK-0.7.0-REV-F

3

Contents

Preface ... 7

About this Document ... 7

Introduction .. 8

Supported Development Platforms .. 8

Contents of the SDK ... 10

Directory Structure of the SDK ... 10

Understanding Livescribe Desktop SDK ... 11

Overview of Architecture .. 11

API in the Livescribe Desktop SDK ... 11

Communicating with a Smartpen .. 13

PenComm Service ... 13

Overview of Desktop Application and Smartpens 13

Getting Incremental Data ... 14

Start From Time .. 14

Last Docking Time ... 15

Merging the Retrieved Data .. 15

Docking a Smartpen .. 15

Undocking a Smartpen .. 17

Sample Application: Getting Smartpen Status 18

Registering Desktop Applications .. 20

Registering Packages of Interest and Data Callback 21

Where to Register .. 22

Registering Packages of Interest .. 22

Registering the Data Callback ... 23

Listing Applications and Packages ... 23

Listing Registered Applications .. 23

Listing Registered Packages of Interest 23

Listing All Packages on a Smartpen .. 24

Getting the Smartpen Data File on Your Desktop 26

When You Create a Smartpen Data File ... 27

Smartpen Attach Event .. 27

Data Callback .. 30

Smartpen Attach Event Handler vs. Data Callback 33

The Container .. 34

Accessing Penlet Data ... 36

Penlet vs. Instance.. 38

Application Map ... 39

5

Accessing Penlet Data Via InstanceItem .. 40

Using a foreach statement .. 40

Using a File Iterator ... 40

Penlet Data Retrieval Example .. 42

Accessing an AFD ... 49

Pages in an AFD ... 52

Pattern: Pages and Copies .. 52

Page Templates ... 53

Retrieving Strokes .. 54

Using the Smartpen Change List .. 55

Stroke Retrieval Example ... 57

The AFP Wrapper API .. 65

File and Document Access .. 65

LSDocument ... 65

LSFile ... 66

ContainerStream ... 66

Pages in an AFD ... 66

PageTemplate ... 67

PageInstance .. 67

Graphics Collection ... 67

Direction of the GraphicsCollection Z-Order 68

Static Region Collection ... 69

Direction of the RegionCollection Z-Order 69

Stroke Collections and Strokes as Shapes 70

Intersecting Strokes and Regions .. 70

Miscellaneous Utility Classes ... 72

Metrics ... 72

PenId ... 72

Page Address .. 73

Validating an AFD ... 73

Creating a Page Viewer .. 74

Developing Desktop Applications

7

Preface

About this Document

This document, Developing Applications with the Livescribe Desktop SDK,

describes how to create custom Livescribe desktop applications in C#.

To familiarize yourself with the Livescribe Developer Documentation set,

see Using Developer Documentation in the Docs directory of the Desktop

SDK. If you have questions about Livescribe Platform terminology, see

Introduction to the Livescribe Platform and Developer Glossary in the

Docs directory of the Desktop SDK.

Developing Desktop Applications

8

Introduction

We are proud to present the first release of the Livescribe Desktop SDK to the

Livescribe Developer Community. As a developer of Livescribe smartpen applications,

or penlets, you can now create a custom desktop application to provide off-pen

support for your penlets.

A desktop application runs on a customer’s laptop or desktop computer and

leverages its computing power and display capabilities. The application retrieves

strokes and audio from the smartpen and then processes, manipulates, and

transforms the data, creates different views of data, and presents a user interface

where customers can review, search, edit, annotate, and share.

A custom desktop application supplements the standard Livescribe Desktop

application published by Livescribe, Inc. If your customers need only to back up their

smartpen data, view and search notebooks, and listen to their audio recordings,

Livescribe Desktop will suit them admirably. If you wish to perform special

processing on the data generated by your penlet, present it in a novel fashion, or

provide advanced editing capabilities, you should consider creating a custom desktop

application.

The Livescribe Desktop SDK also provides a programmatic interface for creating

Livescribe paper products. Although you can still create custom paper products for

your penlet using the visual layouts of the Paper Editor, you may prefer the granular

control offered by the paper product API.

Supported Development Platforms

The Livescribe Desktop SDK supports the following development platforms:

 Windows XP SP2/SP3

 Windows Vista

 Windows 7

Developing Desktop Applications

9

Features of Livescribe Desktop SDK 0.7.0

The Livescribe Desktop SDK 0.7.0 allows you to create desktop applications that do

the following:

 Access data generated by penlets that are installed on one or more Livescribe

smartpens attached to your desktop computer.

 Access strokes stored in AFDs that are installed on one or more Livescribe

smartpens attached to your desktop computer.

 Get smartpen status information, such as battery and memory status.

 Get and set smartpen properties.

 Manipulate data in ZIP files on the desktop computer.

 Create a paper product programmatically.

Developing Desktop Applications

10

Contents of the SDK

The Livescribe Desktop SDK includes the Livescribe PenComm API, PenData API, AFP

API, documentation, and sample code. All code is in C#.

Directory Structure of the SDK

The top level of the Livescribe Desktop SDK contains the following directory

structure:

 Bin

Dynamic Link Libraries (DLLs) required for developing C# applications with

the Livescribe Desktop SDK.

 Docs

 APIDocs: HTML-based reference for the PenComm API and Pen Data API.

You can access both API reference sets by double-clicking index.html.

 Developing Desktop Applications: PDF providing an overview on how to

develop desktop applications in C# that access data from penlets installed

on a Livescribe smartpen.

 License documents, development and marketing guidelines, Livescribe

Platform Introduction, Glossary, and Release Notes.

 Samples

 DesktopApps/common

Dynamic link libraries (DLLs) required for compiling sample projects into

.NET assemblies.

 DesktopApps/cs

Source and project files for creating a sample desktop application in C#

with Microsoft Visual Studio 2008.

 Penlets

Source and project files for creating a sample penlet in Java with Eclipse.

Developing Desktop Applications

11

Understanding Livescribe Desktop SDK

The Livescribe Desktop SDK provides a C# Programming Interface (API) for

developing applications that interact with the Livescribe smartpen. Basic interactions

include smartpen status information, penlet data transfer, and stroke data transfer.

Customers can update smartpen firmware with Livescribe Desktop only. Firmware

updating requires central management by the Livescribe server to ensure that the

smartpen remains in a consistent state. Consequently, custom desktop applications

cannot access the smartpen’s firmware updating mechanism.

Overview of Architecture

The following diagram describes the architecture of the Livescribe Desktop SDK.

API in the Livescribe Desktop SDK

PenComm API

The PenComm API allows your desktop application to connect to one or more

smartpens to perform the following tasks:

 Get smartpen information.

 Detect data changes.

 Transfer non-stroke penlet data from a smartpen and write the data to a ZIP

file on the desktop computer's file system.

Desktop Application

AFP Print

License

Server

Module

Pen Comm

API

Printer or File File System Internet Smartpen

Your App

SDK

AFP

Desktop SDK Overview

 AFP API C# wrapper

AFP Document

Interface

 PenData API
Rendering

To be released

Developing Desktop Applications

12

 Perform smartpen commands and penlet commands.

PenData API

The PenData API allows your desktop application to access the penlet data or AFDs

and perform the following tasks:

 Retrieve non-stroke penlet data.

 Retrieve stroke data from AFDs.

 Render AFDs on a desktop computer monitor.

 Create AFDs programmatically.

AFP API Wrapper

The AFP API Wrapper is a C# wrapper for the Print and Document modules of the

AFP (Anoto Functionality Platform) library. It is the low-level API upon which all AFD

access is based. For most coding, however, you will use the higher level PenData API

instead, since it provides simpler access with less coding. Certain tasks, however,

require that you use both APIs. If your application has sophisticated or highly

sensitive performance needs, you will make extensive use of the AFP API Wrapper.

Developing Desktop Applications

13

Communicating with a Smartpen

PenComm Service

To develop and run desktop applications, the PenComm Service must be installed on

your desktop computer. The PenComm Service is installed automatically with the

Livescribe Desktop software. Update your Livescribe Desktop to the latest version to

ensure that you obtain the most up-to-date PenComm Service.

If your computer does not have Livescribe Desktop installed, you can install the

PenComm Service using the Microsoft Windows installer that is included in the

Livescribe Desktop SDK. The path in the Desktop SDK is:

Bin/cs/PenComm/PenCommServiceInstaller.msi

Overview of Desktop Application and Smartpens

A desktop application can communicate with smartpens that a user attaches to the

desktop computer. To do so, your application should implement the following steps.

Note: The terms attaching a smartpen and docking a smartpen are synonymous.

1. Create a Smartpens object.

Creating a Smartpens object automatically initializes the PenComm Client

Library and allocates resources for communicating with attached smartpens.

2. To specify a custom log file, pass true as the first parameter to the

Smartpens construct, and the custom log file path as the second parameter.

For example:

Smartpens smartpens = new Smartpens(true, "CSSampleDesktApp.log");

 The default log file name is PenCommSdk.log and the default location is

the directory that contains the PenComm Service executable.

3. To be notified asynchronously that a smartpen has been docked, register a

smartpen attach event handler. For details, see Docking a Smartpen.

4. To be notified asynchronously when a smartpen is undocked, register a

smartpen detach event handler. For details, see Undocking a Smartpen.

Developing Desktop Applications

14

5. You can receive data synchronously from a smartpen. Call the DataGet

method on your Smartpen object. A common place to make the call is from

within the smartpen attach event handler. The DataGet method specifies the

package (penlet or AFD) from which you wish data.

6. You can receive asynchronous notification from the PenComm Service that

one or more packages have new data. These are packages of interest for

your desktop application. They can be penlets or AFDs.

Implementing asynchronous handling of new data involves:

a. Registering your desktop application.

b. Registering one or more packages of interest for your desktop application.

c. Implementing a data callback that handles new data from these packages

of interest.

d. Registering the data callback.

For more detail, see Registering Packages of Interest and Data Callback.

7. Trigger the re-enumeration of smartpens by calling the Find method on your

Smartpens object.

Getting Incremental Data

When requesting data from a smartpen, your desktop application needs to know

when the data was created. We recommend that you request existing data the first

time the smartpen is docked. Thereafter, your application may choose to receive

only data created since the last time the smartpen was docked. The original data set

plus all increments constitute the complete data set for the smartpen.

You have two choices for obtaining increment of data:

 Synchronously.

 Asynchronously.

Start From Time

If you get your data increment synchronously, you must specify the start from time

of the data. Only data created on the smartpen after the start time will be delivered

to your application. Pass that start time to the SmartpenChangeList.Update and the

Developing Desktop Applications

15

Smartpen.DataGet methods. For details, see The DataGet Method and Smartpen

Change List.

Last Docking Time

If you receive your data asynchronously, you automatically get the data increment

since the last dock time—that is, the time that the smartpen was last docked to the

desktop computer. Every time the smartpen is docked, the PenComm Service:

 Passes the smartpen attach event handler a Smartpen object with a

ChangeList property. The PenComm Service calls the registered smartpen

attach event handler and passes a Smartpen object. The ChangeList property

of the Smartpen object is a SmartpenChangeList object. The change list will

be empty until you call the ChangeList.Update method on the Smartpen

object, passing a start time parameter.

 Invokes your registered data callback with data created since the last docking

time.

When a smartpen is docked, the PenComm Service records the current smartpen

RTC as the dock time. The increment of new data is the data created on the

smartpen between the last dock time and the dock time.

Merging the Retrieved Data

Whether retrieved synchronously or asynchronously, the increments must be merged

programmatically by your desktop application. To simplify this task, save data

increments to files and directories whose names indicate the source of the data—for

example, filenames that indicate the smartpen ID, package name, retrieval time, etc.

See Merging AFDs.

Docking a Smartpen

When the user attaches a smartpen to the desktop computer, the PenComm Service

performs the following actions, and your desktop application should respond as

indicated. If the service has connected with the smartpen before, it is considered an

existing smartpen. Otherwise, it is a new smartpen.

Developing Desktop Applications

16

1. The PenComm Service detects that a smartpen has been attached and

determines whether it is a new or existing smartpen. The service sets the

dock time value to the current RTC time from the smartpen.

 For a new smartpen, the PenComm Service considers the last dock time to

be zero (0), so that your application receives all current data from the

smartpen.

 For an existing smartpen, the last dock time has the value of dock time

from the last occasion the smartpen was docked.

2. The Livescribe Desktop Launcher is listening for smartpen attach and

smartpen detach events. If a desktop application is configured to auto-start

and is not running, then the Livescribe Desktop Launcher starts it.

3. The PenComm Service sends an event to all registered desktop applications

by calling their registered smartpen attach event handler. To register the

handler:

a. Implement a smartpen attach event handler whose signature matches the

following delegate type, declared in the Smartpens class:

public delegate void SmartpenChangeCallback(Smartpen pen)

b. Create an instance of that delegate type.

c. Add the delegate instance to the SmartpenAttachNormalEvent, defined in

the Smartpens class.

Registration code for a smartpen attach event handler will look something like

this (assuming your handler is named PenAttachEvent):

smartpens.SmartpenAttachNormalEvent += new

Smartpens.SmartpenChangeCallback(PenAttachEvent);

4. The smartpen attach event handler should internally track the event

information. In the Smartpen parameter of the event handler, the PenComm

Service passes an object representing the smartpen that was just attached.

The Smartpen object has three important properties that your desktop

application may wish to access from the handler:

 ChangeList: a SmartpenChangeList object that wraps a collection of

ChangeItem objects. Each ChangeItem object contains information on

changes in a package that occurred since the last dock time. You can use

this information to request the actual data.

../../../../../../Hudson/Livescribe_DesktopSDK_0.7_372/Livescribe_DesktopSDK_0.7/Docs/ApiDocs/PenComm/Livescribe_DesktopSDK_PenComm_Smartpen.html

Developing Desktop Applications

17

Note that the SmartpenChangeList object will be empty until you call

ChangeList.Update on the Smartpen object, passing a start time

parameter.

 Hardware: a SmartpenHardware object containing properties such as

battery level, memory status, Pen ID (a unique integer), Pen Serial (the

Pen ID as a string), smartpen firmware version, etc.

 Packages: a SmartpenPackages object that wraps PackageItem objects.

Each PackageItem object represents information about a penlet or an AFD

installed on the smartpen.

5. Optionally: the smartpen attach event handler may also register the data

callback with the PenComm Service. See Registering Packages of Interest and

Data Callback.

6. The PenComm Service checks registered packages of interest (if any) for data

that is new since the last dock time. The service ignores any package that has

not been registered as a package of interest.

7. The PenComm Service attempts to transfer a package's new data by invoking

the desktop application's data callback at least once for each package that

has new data.

a. The transfer operation fails if your desktop application is not currently

running. In that case, the service sends the data to your application

later—after your application starts and registers the data callback.

8. The PenComm Service sets the last dock time value so it is ready for the next

occasion when the smartpen is docked: the current dock time value is

assigned to last dock time.

Undocking a Smartpen

When a smartpen is detached (or, undocked), the PenComm Service takes the

following actions, and your application should respond as indicated.

1. The PenComm Service detects that a smartpen has been detached.

2. The PenComm Service sends an event to all registered desktop applications

by calling their registered smartpen detach event handler. To register the

handler:

Developing Desktop Applications

18

a. Implement a smartpen detach event handler whose signature matches the

following delegate type, declared in the Smartpens class:

public delegate void SmartpenChangeCallback(Smartpen pen)

b. Create an instance of that delegate type.

c. Add the delegate instance to the SmartpenDetachNormalEvent, defined in

the Smartpens class.

Registration code for a smartpen attach event handler will look something like

this (assuming your handler is named PenDetachEvent):

smartpens.SmartpenDetachNormalEvent += new

Smartpens.SmartpenChangeCallback(PenDetachEvent);

3. Your desktop application should respond appropriately. For instance, you

might remove this smartpen from the list of smartpens displayed in the UI of

your application.

Sample Application: Getting Smartpen Status

Your desktop application can access the status information of smartpens attached to

the computer. Use the Hardware property of the Smartpen object passed to you by

the smartpen attach event handler.

The following sample demonstrates how to access the smartpen's battery and

memory status, as well as the user time. It is a fully-functioning example of a very

simple desktop application, showing how to initialize the PenComm Client Library,

create a custom log file, handle smartpen attach and detach events, and display the

user time in a human-readable format.

using System;

using System.Threading;

using Livescribe.DesktopSDK.PenComm;

namespace GetPenInformation {

 class GetPenInformation {

 private const string PENCOMM_LOG = "GetPenInformation.log";

 static bool foundPen = false;

 static void Main(string[] args) {

 Smartpens smartpens = new Smartpens(true, PENCOMM_LOG);

 // The Smartpen object keeps track of attach event handlers in

 // SmartpenAttachNormalEvent

 // Create a new callback object for our PenAttachEvent method and

../../../../../../Hudson/Livescribe_DesktopSDK_0.7_372/Livescribe_DesktopSDK_0.7/Docs/ApiDocs/PenComm/Livescribe_DesktopSDK_PenComm_Smartpen.html

Developing Desktop Applications

19

 // register it by adding it to the list of attach event handlers.

 smartpens.SmartpenAttachNormalEvent +=

 new Smartpens.SmartpenChangeCallback(PenAttachEvent);

 // Do the same for our detach event handler.

 smartpens.SmartpenDetachNormalEvent +=

 new Smartpens.SmartpenChangeCallback(PenDetachEvent);

 Console.Write("Waiting for pen.");

 // Search for any already docked pens

 smartpens.Find();

 // Keep processing until user presses a key to terminate

 while (!Console.KeyAvailable) {

 if (!GetPenInformation.foundPen) {

 Console.Write(".");

 }

 Thread.Sleep(2000);

 }

 }

 static private string FormatMem(ulong bytes) {

 return (bytes / (1024 * 1024)) + " MB";

 }

 static private string FormatUserTime(ulong userTime) {

 // Create DateTime object that represents 1/1/1970

 DateTime unixEpochTime = new DateTime(1970, 1, 1);

 // Adding userTime (the number of milliseconds since 1/1/1970)

 // gives us the current time.

 DateTime currentPenTime = unixEpochTime.AddMilliseconds(userTime);

 return currentPenTime.ToString();

 }

 static private void PenAttachEvent(Smartpen pen) {

 GetPenInformation.foundPen = true;

 // The pen.Hardware property is not valid until we update it.

 pen.Hardware.Update();

 // Write out some interesting information about the connected pen

 Console.WriteLine("\n\n== Pen " + pen.PenSerial + " connected ==");

 Console.WriteLine("Model = " + pen.PenTypeText);

 Console.WriteLine("Battery Level = " + pen.Hardware.Battery.Voltage + " V");

 Console.WriteLine("RTC Time = " + pen.RtcTime());

 Console.WriteLine("User Time = " + FormatUserTime(pen.UserTimeGet()));

 Console.WriteLine("\n== PenMemory == ");

 Console.WriteLine("Apps = " + FormatMem(pen.Hardware.MemoryApplication));

 Console.WriteLine("Data = " + FormatMem(pen.Hardware.MemoryFiles));

 Console.WriteLine("System = " + FormatMem(pen.Hardware.MemorySystem));

Developing Desktop Applications

20

 Console.WriteLine("Free = " + FormatMem(pen.Hardware.MemoryFree));

 Console.WriteLine();

 }

 static private void PenDetachEvent(Smartpen pen) {

 Console.WriteLine("\n== Pen " + pen.PenSerial + " disconnected ==");

 }

 }

}

Registering Desktop Applications

You can register your desktop application with the PenComm Service. There are

several reasons for doing so:

 To instruct the PenComm Service that your desktop application should be

automatically started when a smartpen is docked and/or packages of interest

have new data. (Of course, this option applies only if your desktop application

is not already running.)

 As the first step in receiving data via a data callback.

 So any other Livescribe desktop applications can get a list of all registered

applications on the computer.

To register the desktop application with the PenComm Service, do the following:

1. Create a RegAppInfo object and set the following members:

 autoStart—Constant indicating the conditions under which your desktop

application should be started automatically by the PenComm Service.

Possible constants are:

Constant Description

NotSet Auto Start not configured

StartAlways Always start application
when a smartpen is
docked

StartNewDataOnly Start application only
when a package of
interest has new data

Developing Desktop Applications

21

StartNewDataOnlyOrNewPen Start application when a
package of interest has
new data or when a new
smartpen (i.e., not an
existing smartpen) is
docked

 description—String describing your desktop application.

 version—String indicating the version number of your desktop

application.

 path—String specifying the full path to your desktop application.

2. Call the Smartpens.DesktopApplications.RegisterApp method, passing the

RegAppInfo object.

The method returns the application handle for your desktop application. You

will use the application handle when registering packages of interest and a

data callback.

Registering Packages of Interest and Data Callback

To receive new data from a package on a docked smartpen, your desktop application

must register its interest in these packages. They become packages of interest for

your application. In addition, your desktop application must register a callback that

the PenComm can whenever it detects new package data. This occurs most

commonly when the user attaches a smartpen to the desktop computer. Scenarios

for new penlet data being detected while the smartpen is attached to the computer

are less common at present.

Setting up a data callback involves four steps:

1. Register your desktop application. See Registering Desktop Applications,

above.

2. Register your package(s) of interest. See below.

3. Implement a data callback. See Data Callback.

4. Register the data callback. See below.

Developing Desktop Applications

22

Where to Register

There are two main places in your code where you perform the registration of your

application, your package(s) or interest, and your data callback:

 In the smartpen attach event handler.

 In your PenComm library initialization code—after you create the Smartpens

object (which initializes the library) and before you add the smartpen attach

event handler to the Smartpens.SmartpenAttachNormalEvent, The following

code snippet demonstrates the location:

 smartpens = new Smartpens(true, PENCOMM_LOG);

 //YOU CAN INSERT APP, PACKAGE, DATA CALLBACK REGISTRATION HERE

 smartpens.SmartpenAttachNormalEvent += new

 Smartpens.SmartpenChangeCallback(PenAttachEvent);

 smartpens.Find();

Registering Packages of Interest

To register a package as a package of interest for your desktop application, do the

following:

1. Create a RegPackageInfo object and set the following members:

 appHandle—The application handle for the desktop application that is

registering the package. You obtained this handle when you called the

Smartpens.DesktopApplications.RegisterApp method to register your

desktop application.

 penId—The unique 64-bit unsigned integer that identifies a smartpen. It

is a Livescribe.DesktopSDK.PenComm.PenId object. You can indicate

that your desktop application is interested in all attached smartpens by

setting this member to 0.

 uniqueName—String uniquely identifying the package. For a penlet, it is

the fully-qualified class name. For an AFD, it is the GUID.

2. Call the Smartpens.DesktopApplications.RegisterPackage method,

passing the RegPackageInfo object.

Developing Desktop Applications

23

The method returns the package handle for your package. You will use the

package handle in your implementation of the data callback.

Registering the Data Callback

To register your data callback, do the following:

1. Call the Smartpen.DesktopApplictions.RegisterDataCallback method,

passing in the name of your data callback implementation.

For information on how to implement your data callback, see Data Callback. For a

working sample of a data callback, see Penlet Data Retrieval Example.

Listing Applications and Packages

You can get various lists of Livescribe desktop applications and packages.

Listing Registered Applications

The PenComm Service can handle multiple Livescribe desktop applications running

simultaneously. To get a list of the other desktop applications that are registered

with the PenComm Service, do the following:

1. Call the Smartpens.DesktopApplications.GetRegisteredAppList method.

It will return a list of RegAppInfoItem objects. Each object has properties that return

the application handle and the RegAppInfo object that was used to register the

application.

Listing Registered Packages of Interest

To get a list of packages that are packages of interest to one or more desktop

applications on your computer, do the following:

1. Call the Smartpens.DesktopApplications.GetRegisteredPackageList

method.

Developing Desktop Applications

24

It will return a list of RegPackageInfoItem objects. Each objects has properties that

return the package handle and the RegPackageInfo object that was used to register

the package.

Listing All Packages on a Smartpen

To get a list of all packages that are installed on a smartpen, do the following:

1. Read the Packages property of the Smartpen object passed by the PenComm

Service to your smartpen attach event handler.

This property returns a collection of PackageItem objects, each of which contains

information about a package, such as:

To retrieve a list of packages for a smartpen, you can code the following in your

smartpen attach event handler:

1. Call Packages.Update method on the Smartpen object passed in the event

handler.

2. Iterate over the PackageItem objects and do something appropriate. For

example, you might wish to add them to a List, for display on the UI of your

application.

Property Description Examples

PackageName user-friendly name of the
package

Paper Replay
Flip Notebook 1

FullPath location of the package on the
smartpen

penlets/LS_Paper_Replay.jar

penlets/LS_Flip_Notepad_01_pen.af

Version version of package 1.0

2.1

2.3

ClassName ID of the package

For a penlet—
the fully-qualified class name.

com.livescribe.paperreplay.PaperReplay

For an AFD—
the GUID

0x3ce96ea355e05d59

Developing Desktop Applications

25

The following sample code illustrates how you might code a smartpen attach event

handler to retrieve the list of packages, and then call custom methods to output a list

of document info (for an AFD) or the file and directory names of penlet data (for a

penlet).

The relevant portion of the smartpen attach event handler looks like this:

 private static void PenAttachEvent(Smartpen pen) {

 foundPen = true;

 try {

 // Refresh packages list

 pen.Packages.Update();

 // Show package data

 foreach (PackageItem packageItem in pen.Packages.Items) {

 System.Console.WriteLine("\n==============================");

 System.Console.WriteLine("\nPackage: " + packageItem.PackageName +

 " (" + packageItem.FullPath + ")");

 // Retrieve the data of the package

 pen.DataGet(packageItem.PackageName, 0, DATA_FILE);

 // Anything that comes from the pen can be opened as a container

 try {

 Container container = new Container(DATA_FILE);

 // If container is a document, we can access the document member

 if (container.IsDocument()) {

 PrintAFDInfo(container.Document);

 }

 // If container is a penlet, we can access the penlet data member

 if (container.IsPenletData()) {

 PrintPenletDataFilesDirs(container.PenletData);

 }

 container.Close();

 }//end inner try

 }//end foreach

 . . .SKIPPING EXCEPTION CATCHING STATEMENTS HERE, FOR BREVITY . . .

 }//end outer try

 }//end method

For the moment, you can ignore the pen.DataGet method and the Container class.

Both will be discussed in subsequent sections of this manual. Also, in the interest of

space, the custom methods PrintAFDInfo and PrintPenletDataFilesDirs are not

reproduced here. If you wish to examine the entire ListPackages sample application,

see Accessing an AFD.

Developing Desktop Applications

26

Getting the Smartpen Data File on Your

Desktop

The previous section has discussed how you can use the PenComm API to connect to

docked smartpens, get smartpen status, list packages on a smartpen, and register

your desktop application with the PenComm Service.

With those preliminaries out of the way, we will now address one of the most

fundamental tasks of a desktop application: getting data from a smartpen. This

section explains how to obtain data from a docked smartpen and write it to a

compressed file (a ZIP file) on your computer. The starting point for all smartpen

data manipulations is a ZIP file containing the smartpen data you retrieved. The

smartpen data may be:

 Penlet Data: Non-stroke, application-generated data that was stored

programmatically by a penlet to penlet storage on the smartpen. This data

can include many files of different kinds, such as audio files if a penlet records

sound, as Paper Replay does. It can include text generated by the penlet by

invoking the HWR (Handwriting Recognition) engine on the user's strokes in

real time. Or it can be data calculated by the penlet in response to user input.

But to repeat: it does not include the strokes created by the user on

Livescribe paper.

 AFD: a compressed file containing a paper product definition, dot pattern,

strokes, and other data. The paper product definition contains page layouts,

including the graphic images and static regions on each page layout. Dot

pattern consists of a unique pattern page for each page of the paper product.

Strokes are data describing the strokes made by smartpen users on each

page of the paper product.

Other data includes the same user-generated data you can access via Penlet

Data. However, this store contains data from all penlets and smartpens that

have used the paper product. If your paper product has Open Paper sections,

much of that data may not be relevant to your desktop application. In the

most common case, you should use Smartpen.DataGet and pass the name of

your penlet.

Developing Desktop Applications

27

When You Create a Smartpen Data File

There are two principal situations in which you create a smartpen data file on your

desktop computer: (1) in response to a SmartpenAttachNormalEvent and (2) in a

Data Callback.

Smartpen Attach Event

When the SmartPenAttachNormalEvent occurs, the PenComm Service invokes any

methods that your desktop application registered as handlers. A

SmartpenAttachNormalEvent is delivered for each smartpen attached; all registered

methods for that event are called for each smartpen. Our samples have only one

method registered to handle the smartpen attach event.

A smartpen attach event handler is passed the Smartpen object for which the event

is being delivered. In the handler, you can:

 call the DataGet method on the Smartpen object to retrieve data from a

package.

 register a data callback so that the PenComm Service can send your desktop

application new data from packages of interest.

Sometimes, your smartpen attach event handler will do both.

The DataGet Method

When you wish to make a synchronous call to get data from a smartpen, invoke the

Smartpen.DataGet method. It can be called on any package. The method is

overloaded, but its most-used signature is:

public bool DataGet(string package, UInt64 time, string destFile)

Parameter Description

Package For penlet: fully-qualified classname

For AFD: the GUID

Time You are requesting data created after this
time.

Developing Desktop Applications

28

destFile Full path to the ZIP file on your desktop.
The transferred penlet data or AFD data
will be stored in this ZIP file.

Start Time

When calling the DataGet method, you must also pass in a start time. To get just the

new data generated by the package, pass a smartpen RTC time. To get all data

generated by the package, pass a time of 0.

One approach to getting incremental package data is as follows: Call the method

initially with a time of 0. For subsequent calls to DataGet, pass the smartpen RTC

time of your previous call. Thus, on each call to DataGet, you should store the

current smartpen time, so you can use it for your next call. You can access the

current smartpen time by calling the RtcTime method on the Smartpen object.

To determine whether it is worth calling DataGet on a package, you will wish to know

if it has new data. To get a list of penlets and AFDs with new data, use the

ChangeList property of the Smartpen object passed to you by the smartpen attach

event handler. Proceed as follows:

1. Call the ChangeList.Update method of the Smartpen object, passing in the

start time.

2. Access the change list via the ChangeList property of the Smartpen object.

Iterate over the ChangeItem objects in the change list. Each change item

describes one package that has data changes.

3. For each package with data changes, call the DataGet method, passing in the

same start time you passed to SmartpenChangeList.Update. (For more on

change lists, see the section titled Smartpen Change List, below.)

Exception for Not Installed or Not Run Yet

If you call DataGet and pass a package that is not installed on the smartpen, you will

get an exception. Your desktop application can inform the user that the AFD or

penlet is not installed on the smartpen, or handle the absence in some other way.

If you call DataGet and pass a penlet that is installed but has not been run on the

smartpen, you will also get an exception. Your desktop application can inform the

user that the penlet must be run at least once on the smartpen before penlet data

from it can be transferred.

Developing Desktop Applications

29

Smartpen Change List

The smartpen change list returns a digest of the changes made to penlet data or

AFDs since a given time. Change list items do not contain the actual penlet data

changed or the strokes added. Instead, a change list item describes penlets or AFDs

which have new data.

Generally, you access a change list from within the smartpen attach event handler,

using the Smartpen object provided to you. The ChangeList property of the

Smartpen object returns a collection of ChangeItem objects. Each ChangeItem object

relates to a particular package that has changes.

After a smartpen is docked, the ChangeList property of the Smartpen object is

initially empty. To retrieve the current change list, call the ChangeList.Update

method on the Smartpen object, passing in the start time, which is a smartpen RTC

time. You will get a list of penlets and AFDs that have data created or modified after

the time specified.

If the package is a penlet, the change item indicates the class name of the penlet.

You can use the class name to request the associated penlet data. The fully-qualified

class name of the penlet is returned by the Classname property of the ChangeItem

obejct. The Guid property (and the Pages property) will be null.

If the package is an AFD, the change item indicates the GUID of the AFD. You can

use the GUID to request the data from the AFD. Such data includes strokes, if there

are any. A string representing the GUID of the AFD is returned by the Guid property

of the ChangeItem object. (The Pages property will also have a non-null value.) The

Classname property will be null.

The Classname property and the Guid property are valid alternately: If one is set,

the other is not. They are never both set in the same change list item.

To process the change list, iterate over the collection of ChangeItem objects. Test the

Classname and Guid properties of each change list item to see if it refers to penlet

data or an AFD.

You may be interested in penlet data from your penlet(s) only: For each

change list item that denotes penlet data, check for one of your penlets by getting

the Classname property. For each of your penlets, call DataGet on the Smartpen

object and pass the Classname value. Also pass an appropriately-named ZIP file to

hold the data streamed from the smartpen. An appropriate naming scheme might

Developing Desktop Applications

30

involve concatenating values from the penSerial, ClassName, and EndTime

properties of the change list item.

You may be interested in retrieving strokes: For each change list item that

denotes an AFD, check for one of your AFDs by obtaining the Guid for the AFD (or

use the AFD's Title property). For each of your AFDs, call DataGet on the Smartpen

object and pass the Guid value. Also pass an appropriately-named ZIP file to hold

the AFD transferred from the smartpen. An appropriate naming scheme might

involve concatenating values from the penSerial, Guid, and EndTime properties of

the change list item.

A change item for an AFD also includes a Pages property, which returns a collection

of PageChangeItem objects, each of which represents a page that has changes

(including strokes) in the AFD. After you transfer the AFD data to your desktop

computer, you can access the stroke information from individual pages, using the

collection of PageChangeItem objects. See Using the Smartpen Change List in the

Retrieving Strokes section.

Start Time

To populate the change list, you must call the ChangeList.Update method on the

Smartpen object passed to you by the smartpen attach event callback. The change

list will be updated, and the StartTime property in the SmartpenChangeList object

will reflect the start time you passed to the Update method. You can then pass this

StartTime to the DataGet method to retrieve the actual data.

The start time might be a value particular to your desktop application and the data it

is retrieving. For instance, you may wish to get data starting from a particular

milestone date, no matter how many times the smartpen has been docked in the

interim. You must determine and store this time yourself.

If you wish to perform incremental data retrieval, then pass a value to the time

parameter of the SmartpenChangeList.Update method that represents the

smartpen RTC time of the previous occasion that you called Update. Your code is

responsible for storing the smartpen RTC time of that previous call, and then loading

and passing it to the current call.

Data Callback

When a package of interest has new data, the PenComm Services calls the registered

data callback of your desktop application. For details on registering a data callback,

see Registering Packages of Interest and Data Callback.

Developing Desktop Applications

31

The data callback you implement must match the signature of

PenAPI.DataCallback:

public delegate PenAPI.DataOpTypes DataCallback (PenDataCallbackInfo dataInfo,

 IntPtr userParam);

The PenComm Service returns essential information in the dataInfo parameter,

which is a PenDataCallbackInfo structure. The structure includes the following

members:

Generally, your data callback should proceed as follows:

1. Check the packageHandle member of the structure to determine which

package of interest this invocation of the data callback concerns. You can

perform any special processing, if this package requires it.

Member Description

penId The ID of the smartpen. It is a 64-bit unsigned number.

packageHandle The package handle of the package that the transferred data is from.

You can pass the penletHandle to the

ApplicationManagement.GetRegisteredPackage method, which returns

the RegPackageInfo object. That object contains the class name or GUID of

the package.

startRtc The start time of the data being transferred by this callback. This data was
created on the smartpen after this time. It is generally, the last dock time of
the smartpen.

buffer The actual chunk of data being transferred in this invocation of the data
callback.

bufSize Size in bytes of the current chunk of transferred data.

packetStatus Constant representing the status of the chunk of data transferred in the buf

member. Defined in the PenAPI.DataPacketStatus enumeration, the

possible constants are:

MorePackets — There are more chunks. They will be sent in subsequent
invocations of the data callback.

LastPacket — The current chunk is the final one of the current file being
transferred from the smartpen.

LastPacketAndLastFile — The current chunk is the final chunk of the final file
being transferred from the smartpen.

../../../../../DesktopSDK/trunk/Build/Docs/ApiDocs/PenComm/Livescribe_DesktopSDK_PenComm_Interop_PenAPI_DataOpTypes.html

Developing Desktop Applications

32

2. Read the buffer member of the structure into a local buffer and write it to a

ZIP file on the computer's file system. Give the ZIP file an appropriate name,

perhaps concatenating the penId, penletHandle, and startRtc values of the

structure.

The following is a sample data callback named NewData. In particular, note the

various uses of the dataInfo parameter.

private static PenAPI.DataOpTypes NewData(PenDataCallbackInfo dataInfo,

 IntPtr userParam) {

 try {

 // Construct file name that will be unique to a single stroke. We will save our

 // data in that file. We need to save the data in a file in case

 // the stroke is transferred to the desktop app in multiple invocations of the

 // callback. This may happen, since a stroke can be composed of many

 // co-ordinates.

 String filePath = Path.GetTempPath() + "Pen" + dataInfo.penId +

 "_Penlet" + dataInfo.penletHandle + "_Time" + dataInfo.startRtc + ".zip";

 // Create or append to the file, depending on whether we're

 // starting with the first co-ordinate

 BinaryWriter bw = null;

 if (dataInfo.pos == 0) {

 bw = new BinaryWriter(new FileStream(filePath, FileMode.Create));

 }

 else {

 bw = new BinaryWriter(new FileStream(filePath, FileMode.Append));

 }

 byte[] buf = new byte[dataInfo.bufSize];

 Marshal.Copy(dataInfo.buffer, buf, 0, dataInfo.bufSize);

 bw.Write(buf);

 bw.Close();

 if (dataInfo.packetStatus != PenAPI.DataPacketStatus.MorePackets) {

 PenletData penletData = new Container(filePath).PenletData;

 DisplayData(penletData);

 }

 }

 catch (Exception e) {

 HandleError(e);

 }

 return PenAPI.DataOpTypes.Continue;

 }

Developing Desktop Applications

33

Smartpen Attach Event Handler vs. Data Callback

You may be wondering when to implement a smartpen attach event handler and

when to implement a data callback. As a rule of thumb, a smartpen attach event is

best when you want to process data from multiple smartpen packages. On the other

hand, a data callback is simpler and more efficient when processing data—

particularly, a lot of data—from a single smartpen package.

Tip: Remember that your smartpen attach event handler should return relatively

quickly. Consequently, calls to DataGet that involve large data transfers should be

done in a separate thread—not in the attach event handler.

Developing Desktop Applications

34

The Container

Once you have a ZIP file containing Penlet Data or an AFD, your desktop application

is ready to use the PenData API to access that file and do interesting things with it.

The Container class represents the ZIP file on your desktop computer. In fact, the

most common constructor of Container takes the file path to your ZIP file. Your first

question is whether this is penlet data or an AFD. The IsPenletData and

IsDocument methods provide the answer.

The following high-level diagram shows the relationship between the Container,

Document and PenletData objects. Many important methods and properties are

omitted.

Note: This class diagram, and the others in this manual, depicts containment

hierarchies of objects. It is not a generalization hierarchy of superclasses and

subclasses. These object hierarchies are created automatically for you by the

Desktop SDK APIs and serve to model various aspects of smartpen communication

and smartpen data access.

If your Container has penlet data, you will use the PenletData object. The

Document property will be null. The most important property of the PenletData

object is the PenItems property, which will allow you to drill down into the Penlet

Data object model.

+ IsDocument()
+ IsPenletData()

Container

+ Document
+ Penlet Data

+ GetPatternPage()
+ Pages()

Document

+ DocumentInfo
+ ApplicationMap
+ LSDocument

PenletData

+ PenItems

Developing Desktop Applications

35

If your Container has an AFD, you will use the Document object. The PenletData

property will be null. The most important members of the Document object are:

Member Description

Pages Returns a collection of the pages in the AFD.

GetPatternPage Returns the pattern page (page instance) of a page in the AFD. A
PatternPage object gives you access to the strokes on a page.

DocumentInfo Metadata on the AFD, such as the author and GUID.

ApplicationMap A map of key-value pairs. The key is the Applications ID used in static regions
to identify a penlet. The value is the penlet's fully-qualified classname. See
Penlet vs. Instance. (Remember that static regions are defined in an AFD.)

LSDocument Low-level object for manipulating documents. The LSDocument class is defined
in the AFP API Wrapper. See LSDocument.

Developing Desktop Applications

36

Accessing Penlet Data

To access penlet data, your desktop application uses the Penlet Data object model.

The model starts with a ZIP file containing the penlet data. Through a hierarchy of

contained objects, it offers access to the individual data files stored in the ZIP file.

The hierarchy is automatically created by the PenData API when you create a

Container object. Following is a very high-level diagram.

AppItem

+ AppItems

AppItem

+ AppItems

AppItem

+ InstanceItems

+ IsDocument()
+ IsPenletData()

Container

+ Penlet Data

PenletData

+ PenItems

AppItem

+ AppItems

AppItem

+ AppItems

PenItem

+ AppItems

AppItem

+ AppItems

AppItem

+ AppItems

+ GetFileIterator()
+ OpenStream()

InstanceItem

+ InstanceId

Developing Desktop Applications

37

The desktop application code that accesses the model can look something like this

snippet:

 Container container = new Container(PENLET_DATA_ZIP_FILE);

 PenletData penletData = container.PenletData;

 if (!container.IsPenletData()){

 Console.Out.WriteLine("Not a penlet data file");

 return false;

 }

 foreach (PenItem penItem in penletData.PenItems){

 foreach (AppItem appItem in penItem.AppItems){

 foreach (InstanceItem instance in appItem.InstanceItems){

 //Use Penlet Data here in remarkable ways!

 }

 }

 }

The Container object has a PenletData property, which returns the PenletData

object for this ZIP file.

The PenletData class encapsulates the penlet data generated by one or more

penlets on one or more smartpens. It is a wrapper for the PenItems collection and

implements the IEnumerable interface.

The samples in this section assume that the penlet data is from one penlet on one

smartpen. If you created your ZIP file by calling pen.DataGet and passing in your

fully-qualified classname, this easy-to-handle case applies to your code.

On the smartpen, penlet data exists in penlet storage. The smartpen.DataGet call

queries your penlet for the penlet data, and your penlet must serve it up by

implementing the Remote interface. The data callback gets penlet data from penlet

storage by querying the smartpen system—without the intervention of your penlet.

In the most common case, only one PenItem instance exists for a particular AFD,

since the AFD was installed on a particular smartpen and later retrieved from it.

Consequently, all data captured by the AFD originated from that smartpen. In the

near future, some penlets will have AFDs that can be transferred from one smartpen

to another. Such AFDs may have data created by more than one pen. Consider a

penlet that allows the annotation of a document by a group of reviewers, each

entering comments and then passing the AFD to the next reviewer.

The PenItem class encapsulates a smartpen that has penlet data in the ZIP file. It

wraps the AppItems collection and implements the IEnumerable interface.

Developing Desktop Applications

38

The AppItem class encapsulates a penlet that has data in the ZIP file. Fixed Print

applications often have only one penlet associated with a given AFD (although it is

possible to build a paper product that is used by multiple Fixed Print penlets). Open

Paper applications, however, can write on any Open Paper product, such as a

Livescribe notebook.

The ApplicationName property is the user-friendly penlet name such as "Paper

Replay". The Path property is the actual path of the penlet inside the container such

as: userdata\AYE-ABD-FDZ-DJ\Paper Replay . The AppItem class wraps the

InstanceItems collection and implements the IEnumerable interface.

The InstanceItem class represents the penlet as a runtime instance on the

smartpen. The class has an InstanceId property and two very important methods:

GetFileIterator and OpenStream.

To access the penlet data in the ZIP file, iterate over the smartpens that generated

penlet data. For each smartpen, iterate over the penlets that stored data in the ZIP

file. From each runtime instance, you can access the data inside the ZIP file.

Note: The PenletData, PenItem, and AppItem classes all implement the

IEnumerable interface defined by the .NET Framework. As a convenience, therefore,

you can access the collections they wrap by using the wrapper object as the in value

of the foreach statement.

Penlet vs. Instance

The term penlet refers to the compiled code associated with a fully-qualified

classname. It is the Java byte code stored in a JAR and installed on a smartpen.

However, the smartpen system cannot yet execute it without creating some

necessary runtime metadata first.

The term penlet instance refers to compiled code associated with an Instance ID. It

is Java byte code stored in a JAR and installed on a smartpen. And it is ready to be

executed. The difference is that the smartpen system has assigned it an Instance ID

to identify the executable as it runs. You can think of the Instance ID like a runtime

handle for the penlet.

Potentially, there could be multiple instances of a penlet running simultaneously,

each with its own Instance ID.

Developing Desktop Applications

39

Each smartpen constitutes a separate "namespace" for its Instance IDs. Thus, within

a given smartpen, each Instance ID is unique, but different smartpens can map the

same Instance IDs to different penlets.

Instance IDs are assigned dynamically, so events like re-setting the smartpen may

cause the Instance IDs to be re-mapped. You need not be concerned about this

potential re-mapping, however, since your desktop application will retrieve the

Instance IDs from the fully qualified classname each time a smartpen is attached. In

other words, in the Penlet Data object model, the AppItem will always return the

current InstanceItems collection.

The AppItem class encapsulates the penlet directory inside the ZIP container. The

InstanceItem class encapsulates a particular instance of that penlet: each instance

represented by its own directory named after the appropriate Instance ID.

For example, consider a container that has this directory structure :

userdata\AYE-ABD-FDZ-DJ\Paper Replay\61\...

AYE-ABD-FDZ-DJ identifies the PenInfo object

Paper Replay identifies the AppItem object

61 identifies the InstanceItem object

In general, a container with penlet data has a directory structure like this:

userdata \ [Pen serial] \ [Penlet name] \ [Instance Id] \ ...

Note: At present, a penlet is executed one instance at a time, so the InstanceItem

collection for an AppItem will have only one element. In the future, you will see

penlets where several instances can run simultaneously on a single smartpen. In that

case, the InstanceItem collection will have more than one element in it.

Application Map

The issue of Instance IDs has a direct impact on static regions. Since static regions

are defined before the penlet is installed, the AFD designer has no way of knowing

the Instance ID. So, in a static region, the Region ID encodes an Application ID in

place of the Instance ID. The Application ID is an arbitrary integer, invented by the

AFD designer, that represents the penlet.

The Application Map is a list of key-value pairs, in which the Application ID is the

key, and the fully-qualified class name of the penlet is the value. At runtime, a user

taps on a static region. The smartpen firmware uses the Application Map to look up

Developing Desktop Applications

40

the fully-qualified class name of the associated penlet. Then the firmware runs the

penlet, creating an Instance ID on the fly.

Accessing Penlet Data Via InstanceItem

The InstanceItem class gives you access to the files that contain the penlet data.

Let us examine those two important methods:

Since InstanceItem class supports IEnumerable, we can use foreach to iterate the

penlet data. Alternatively, you access a file iterator by calling the GetFileIterator

method.

Using a foreach statement

Following is an example that uses a foreach statement to access the files in each

InstanceItem

public bool IteratePenletData(string fileName){

 Container container = new Container(fileName);

 if (!container.IsPenletData()) {

 Console.Out.WriteLine("Not a penlet data file");

 return false;

 }

 foreach (PenItem penItem in container.PenletData) {

 foreach (AppItem appItem in penItem) {

 foreach (InstanceItem instance in appItem.InstanceItems) {

 foreach(LSFile file in instance){

 if (file.Exists()) {

 if (file.IsDirectory()){

 Console.Out.WriteLine("[Directory] " + file.GetFileName());

 } else {

 Console.Out.WriteLine("[File] " + file.GetFileName());

 }

 }

 }

 }

 }

 }

}

Using a File Iterator

The GetFileIterator method returns an object for iterating over the files of your

penlet data. The penlet can save data in a file hierarchy (that is, a tree of files and

directories like a standard file system). In that case, you can iterate over the

Developing Desktop Applications

41

hierarchy in the familiar way: testing if an item is a file or directory, getting the child

items of a directory, retrieving filenames, and reading from or writing to individual

files, as desired.

The OpenStream method, called with a filename, opens the file and returns a stream.

The following code example assumes that you have a ZIP file containing penlet data

and pass it to a method we called IteratePenletData. It outputs a listing of

directories and files contained in the ZIP file.

 public bool IteratePenletData(string fileName){

 Container container = new Container(fileName);

 if (!container.IsPenletData()) {

 Console.Out.WriteLine("Not a penlet data file");

 return false;

 }

 foreach (PenItem penItem in container.PenletData) {

 foreach (AppItem appItem in penItem) {

 foreach (InstanceItem instance in appItem.InstanceItems) {

 FileIterator fileIterator = instance.GetFileIterator();

 LSFile file = fileIterator.GetNext();

 while (file != null & file.ptr != IntPtr.Zero) {

 if (file.Exists()) {

 if (file.IsDirectory()){

 Console.Out.WriteLine("[Directory] " +

 file.GetFileName());

 }

 else {

 Console.Out.WriteLine("[File] " +

 file.GetFileName());

 }

 }

 file = fileIterator.GetNext();

 }

 }

 }

 }

 return true;

 }

The file iterator returns instances of LSFile, which allow you to access the data

files inside the ZIP file. The code first tests if the LSFile object is a directory, and

then writes to the console the string ["Directory"] or ["File"] followed by the

name of the LSFile object.

Developing Desktop Applications

42

Penlet Data Retrieval Example

The next sample gets penlet data from the smartpen, saves it in a ZIP file, and

accesses the data from the ZIP file. The penlet is a sample called GetBoungingBoxes,

included in the Desktop SDK. The penlet stores a line of text that describes the

bounding box around the last stroke the user wrote on Open Paper. The line of text

states the X- and Y-coordinates of the upper-left corner of the bounding box as well

as its height and width. That line of text is the penlet data that will be transferred.

You will learn a lot by reading through this sample carefully, so we include the full

source code.

using System;

using System.Threading;

using System.IO;

using System.Runtime.InteropServices;

using System.Reflection;

using Livescribe.DesktopSDK.PenComm;

using Livescribe.DesktopSDK.PenComm.Interop;

using Livescribe.DesktopSDK.PenData;

using Livescribe.DesktopSDK.AFP;

using PenComm = Livescribe.DesktopSDK.PenComm;

namespace DataCapture {

 class DataCapture

 private static Smartpens smartpens;

 private const string APP_NAME = "DataCapture";

 private const string PENCOMM_LOG = "DataCapture.log";

 private const string PENLET_DATA_FILE = "penletData.zip";

 private const string PENLET_NAME = "GetBoundingBoxes";

 private const string DATA_FILE = "boxes.txt";

 private static bool foundPen = false;

 private static bool handlerRegistered = false;

 private static string tempDir;

 // This sample gets data from the GetBoundingBoxes penlet and displays

 // it on the console. After displaying the data last captured by the penlet,

 // we establish a data handler and wait for new data to show up.

 static void Main(string[] args) {

 tempDir = Path.GetTempPath();

 System.Console.WriteLine("==");

 System.Console.WriteLine("Read data written by the " + PENLET_NAME + " penlet.");

 System.Console.WriteLine("Data will be stored in: " + tempDir);

 System.Console.WriteLine("==");

 System.Console.WriteLine("Waiting for pen.");

 InitializePenCommLib();

 // Keep processing until user presses a key to terminate

Developing Desktop Applications

43

 while (!Console.KeyAvailable) {

 if (!DataCapture.foundPen) {

 // If we didn't find a pen yet, remind user we're waiting for one.

 Console.Write(".");

 }

 Thread.Sleep(2000);

 }

 }

 // Initialize PenComm library

 private static void InitializePenCommLib() {

 smartpens = new Smartpens(true, PENCOMM_LOG);

 // The Smartpens object keeps track of attach event handlers in

 // PulsePenAttachNormalEvent

 // Create a new callback object for our PenAttachEvent method and

 // register it by adding it to the list of attach event handlers.

 smartpens.SmartpenAttachNormalEvent +=

 new Smartpens.SmartpenChangeCallback(PenAttachEvent);

 // Do the same for our detach event handler.

 smartpens.SmartpenDetachNormalEvent +=

 new Smartpens.SmartpenChangeCallback(PenDetachEvent);

 // Search for any already docked pens

 smartpens.Find();

 }

 // Register our data handler (NewData). It will be invoked whenever new data

 // arrives from our penlet of interest (PENLET_NAME).

 private static void RegisterForNewApplicationData() {

 if (!handlerRegistered) {

 try {

 // Application registration information.

 RegAppInfo appInfo = new RegAppInfo();

 appInfo.autoStart = PenAPI.AutoStartTypes.Disabled;

 appInfo.path = Assembly.GetExecutingAssembly().Location;

 appInfo.description = APP_NAME;

 appInfo.version = "1.0";

 // Register Application (that's us)

 AppHandle appHandle = smartpens.DesktopApplications.RegisterApp(appInfo);

 // Register for data callback so that every time the penlet PENLET_NAME has

 // new data, the data will be passed to our callback (NewData).

 PenAPI.DataCallback dataCallback = new PenAPI.DataCallback(NewData);

 smartpens.DesktopApplications.RegisterDataCallback(appHandle, dataCallback,

 null);

 // Register Penlet Information of the GetBoundingBoxes penlet

 RegPackageInfo regPackageInfo = new RegPackageInfo();

 regPackageInfo.appHandle = appHandle;

 regPackageInfo.penId = PenComm.PenId.Zero();

Developing Desktop Applications

44

 regPackageInfo.uniqueName = PENLET_NAME;

 // Register the GetBoundingBoxes penlet

 PackageHandle packageHandle =

 smartpens.DesktopApplications.RegisterPackage(regPackageInfo);

 handlerRegistered = true;

 }

 catch (Exception e) {

 HandleError(e);

 }

 }

 }

 private static PenAPI.DataOpTypes NewData(PenDataCallbackInfo dataInfo,

 IntPtr userParam) {

 try {

 // Construct file name that will be unique to a single stroke. We will save our

 // data in that file. We need to save the data in a file in case

 // the stroke is transferred to the desktop app in multiple invocations of the

 // callback. This may happen, since a stroke can be composed of many

 // co-ordinates.

 String filePath = "Pen" + dataInfo.penId +

 "_Penlet" + dataInfo.penletHandle + "_Time" + dataInfo.startRtc + ".zip";

 System.Console.WriteLine(" NewData: " + (dataInfo.pos+1) + "-" +

 (dataInfo.pos+dataInfo.bufSize) + " of " + dataInfo.total +

 " bytes, status = " + dataInfo.packetStatus);

 System.Console.WriteLine(" writing to: " + filePath);

 filePath = tempDir + filePath;

 // Create or append to the file, depending on whether we're

 // starting with the first co-ordinate

 BinaryWriter bw = null;

 if (dataInfo.pos == 0) {

 bw = new BinaryWriter(new FileStream(filePath, FileMode.Create));

 }

 else {

 bw = new BinaryWriter(new FileStream(filePath, FileMode.Append));

 }

 byte[] buf = new byte[dataInfo.bufSize];

 Marshal.Copy(dataInfo.buffer, buf, 0, dataInfo.bufSize);

 bw.Write(buf);

 bw.Close();

 if (dataInfo.packetStatus != PenAPI.DataPacketStatus.MorePackets) {

 PenletData penletData = new Container(filePath).PenletData;

 DisplayData(penletData);

 }

 }

 catch (Exception e) {

 HandleError(e);

 }

 return PenAPI.DataOpTypes.Continue;

Developing Desktop Applications

45

 }

 // Read and display penlet data.

 private static void DisplayData(PenletData penletData) {

 try {

 // The penlet data file is a zip file which is structured like this:

 // userdata\[Pen Serial]\[Penlet Name]\[InstanceId]\...

 // PenItem corresponds to [Pen Serial]

 // AppItem corresponds to [Penlet Name]

 // InstanceItem corresponds to [InstanceId]

 // The PENLET_NAME penlet data file is named:

 // userdata\[Pen Serial]\[Penlet Name]\[InstanceId]\boxes.txt

 foreach (PenItem penItem in penletData.PenItems) {

 foreach (AppItem appItem in penItem) {

 foreach (InstanceItem instanceItem in appItem.InstanceItems) {

 ContainerStream containerStream = instanceItem.OpenStream(DATA_FILE);

 BinaryReader reader = new BinaryReader(containerStream);

 byte[] data = reader.ReadBytes(1024);

 String value = System.Text.Encoding.ASCII.GetString(data);

 System.Console.WriteLine(value);

 reader.Close();

 containerStream.Close();

 }

 }

 }

 penletData.FileContext.CloseContext();

 }

 catch (Exception e) {

 HandleError(e);

 }

 }

 // Called when a smartpen is attached. The first time a pen is attached,

 // we check for the penlet and process existing data. Then we register for

 // new data. On subsequent attach events for this smartpen, the attach event handler

 // has little effect; however, the NewData callback will be invoked if there is new

 // data.

 // Note 1: The exception handler for DataGet outputs a warning if the penlet is not

 // installed or has not yet been run on the smartpen.

 // Note 2: If we don't wish to warn the user that the penlet has not been installed

 // or run yet, we can omit the attach event handler altogether, and simply register

 // the NewData callback in our InitializePenCommLib method.

 private static void PenAttachEvent(Smartpen pen) {

 DataCapture.foundPen = true;

 Console.WriteLine("\n\n--> Pen " + pen.PenSerial + " connected");

 if (!handlerRegistered) {

 PenletData penletData = null;

 try {

 // Retrieve data for GetBoundingBox penlet and store it in a temporary file.

Developing Desktop Applications

46

 // The data is in zip format and can be processed with any zip reader.

 pen.DataGet(PENLET_NAME, 0, PENLET_DATA_FILE);

 // From the data file we create a container and extract a PenletData object

 // from it for easy processing.

 penletData = new Container(PENLET_DATA_FILE).PenletData;

 }

 catch (Exception e) {

 System.Console.WriteLine ("\nThe " + PENLET_NAME +

 "penlet is not installed on your pen or has not been run successfully.");

 System.Console.WriteLine ("Please install it using the PlatformSDK. ");

 System.Console.WriteLine("Once it is installed, you will need to run the" +

 "penlet and draw a shape on Livescribe Paper.\n");

 HandleError(e);

 return;

 }

 System.Console.WriteLine("Initial Data:");

 DisplayData(penletData);

 RegisterForNewApplicationData();

 }

 }

 static private void PenDetachEvent(Smartpen pen) {

 Console.WriteLine("<-- Pen " + pen.PenSerial + " disconnected");

 }

 private static void HandleError(Exception ex) {

 System.Console.WriteLine("Exception: " + ex.Message, "Error");

 System.Console.WriteLine(ex.StackTrace); }

 }

}

The code relevant to penlet data retrieval starts with the PenAttachEvent handler.

(The handler is first encapsulated by a delegate of type

SmartPens.SmartpenChangeCallback, and then the delegate instance is associated

with the SmartpenAttachNormalEvent.)

 // Set callback to retrieve pen attach events

 smartPens.SmartpenAttachNormalEvent += new

 Smartpens.SmartpenChangeCallback(PenAttachEvent);

When the user attaches a smartpen to the computer, the PenComm Service raises

this event, which calls the PenAttachEvent handler.

The PenAttachEvent method starts by getting penlet data from the PENLET_NAME

penlet (a sample penlet called GetBoundingBoxes) and transfers it to the

PENLET_DATA_FILE file on the desktop computer's file system. The

PENLET_DATA_FILE is arbitrarily named penletData.zip.

 pen.DataGet(PENLET_NAME, 0, PENLET_DATA_FILE);

Developing Desktop Applications

47

The handler creates a PenletData object hierarchy by instantiating a Container and

passing it the ZIP file, which is PENLET_DATA_FILE.

penletData = new Container(PENLET_DATA_FILE).PenletData

Then the handler calls our DisplayData method, passing the penletData object.

Finally, it calls our RegisterForNewApplicationData method in order to register the

penlet and the data callback.

The custom DisplayData method uses the familiar nested foreach statements to

iterate over the PenletData hierarchy. The penlet data was obtained by calling

pen.DataGet inside the PenAttachEvent handler. Consequently, there is only one

smartpen—the Smartpen object returned by the PenComm Service in the pen

parameter of the PenAttachEvent method. It is represented by a single

SmartpenItem object. There is also only one penlet, identified by the PENLET_NAME

passed to the pen.DataGet method. It is represented by a single AppItem.

The InstanceItem object is the single element in its collection. The DisplayData

method calls OpenStream on that object and passes the DATA_FILE. This is a file

called boxes.txt, contained in the ZIP file. The developer of this sample was familiar

with the GetBoundingBoxes penlet and knew that it stores a single file called

boxes.txt. The code does not bother to call the GetFileIterator method on the

InstanceItem, since no file hierarchy exists in this penlet data from this penlet.

An important fact is worth stating here. The contents of the penlet storage

(filenames, file hierarchies, and data types in the files) are up to the penlet

developer. It follows that the desktop application developer must be completely

familiar with how the penlet structured and stored the penlet data.

Note: Desktop applications may wish to access audio files and sessions that were

recorded with Livescribe's Paper Replay. To assist you, the Desktop SDK provides

classes that simplify reading the file format structure and file formats of Paper

Replay. Thus, you do not need in-depth knowledge of how Paper Replay audio and

sessions are stored.

The OpenStream method returns an ContainerStream object, which must be passed

to a stream reader or writer. In this case, we are reading a file from the computer

file system (the boxes.txt in the ZIP file). So, we create a BinaryReader with the

opened stream. Then we read 1024 bytes from the data.txt file, convert them to a

String, and write it to the console.

Developing Desktop Applications

48

After the first attach event for the smartpen, the smartpen event handler will do very

little. Notice the if statement in the smartpen attach event handler:

if (!handlerRegistered) {

// MOST OF THE HANDLER'S FUNCTIONALITY IS IN THESE BRACES!

}

The NewData callback has been registered and will handle data transfers on

subsequent attach events.

Lastly, we should note that the NewData callback gets the transferred data from the

dataInfo parameter that the PenComm Service passes to your application. Each

callback invocation holds up to 1008 bytes of data in dataInfo.buffer.

 BinaryWriter bw = null;

 if (dataInfo.pos == 0) {

 bw = new BinaryWriter(new FileStream(filePath, FileMode.Create));

 }

 else {

 bw = new BinaryWriter(new FileStream(filePath, FileMode.Append));

 }

 byte[] buf = new byte[dataInfo.bufSize];

 Marshal.Copy(dataInfo.buffer, buf, 0, dataInfo.bufSize);

 bw.Write(buf);

 bw.Close().

The callback appends the data to a temporary file because penlet data can be longer

than 1008 bytes, which requires multiple invocation . In this particular case, though,

our single line of text is less than 1008 bytes.

The NewData callback finishes up much like the smartpen attach event handler. It

creates a Container object, gets the PenletData object, and passes it to the

DisplayData call.

Developing Desktop Applications

49

Accessing an AFD

Now let us consider how to proceed when the contents of the ZIP file are an AFD,

instead of penlet data. As a reminder, a very high-level view of the Document class

look likes this. Many methods and properties are omitted:

The DocumentInfo property can be used to get the metadata of an AFD. The

following full-fledged example outputs a list of all packages—both penlets and

AFDS—on the smartpen. We will concentrate on the AFD portion of the sample. The

PenAttachEvent method tests whether the package is an AFD, and then calls our

custom PrintReadAFDInfo method.

using System;

using System.IO;

using System.Threading;

using Livescribe.DesktopSDK.PenComm;

using Livescribe.DesktopSDK.PenComm.Interop;

using Livescribe.DesktopSDK.PenData;

using Livescribe.DesktopSDK.AFP;

namespace ListPackages

{

 class ListPackages {

 private static Smartpens smartpens;

 private const string PENCOMM_LOG = "ListPackages.log";

 private const string DATA_FILE = "data.zip";

 private static bool foundPen = false;

 private static bool complete = false;

 static void Main(string[] args) {

 System.Console.WriteLine("==");

 System.Console.WriteLine("List packages (penlet or paper product).");

 System.Console.WriteLine("Display AFD information and penlet data");

 System.Console.WriteLine("==");

 System.Console.WriteLine("Waiting for pen.");

 InitializePenCommLib();

 // Windows programming should avoid ending while a callback is busy.

 // Also we should give user some indication that we're still waiting,

+ GetPatternPage()
+ Pages()

Document

+ DocumentInfo
+ ApplicationMap
+ LSDocument

Developing Desktop Applications

50

 //if we haven't found a pen yet.

 while (!complete) {

 if (!foundPen) {

 System.Console.Write(".");

 }

 Thread.Sleep(2000);

 }

 }

 // Initialize PenComm library

 private static void InitializePenCommLib() {

 smartpens = new Smartpens(true, PENCOMM_LOG);

 // The Smartpens object keeps track of attach event handlers in

 // SmartpenAttachNormalEvent

 // Create a new callback object for our PenAttachEvent method and

 // register it by adding it to the list of attach event handlers.

 smartpens.SmartpenAttachNormalEvent +=

 new Smartpens.SmartpenChangeCallback(PenAttachEvent);

 // Search for any already docked pens

 smartpens.Find();

 }

 // This is called when a pen is attached

 private static void PenAttachEvent(Smartpen pen) {

 foundPen = true;

 try {

 // Refresh packages list

 pen.Packages.Update();

 // Show package data

 foreach (PackageItem packageItem in pen.Packages.Items) {

 System.Console.WriteLine ("\n==============================");

 System.Console.WriteLine ("\nPackage: " + packageItem.PackageName +

 " (" + packageItem.FullPath + ")");

 // Retrieve the data of the package

 pen.DataGet (packageItem.PackageName, 0, DATA_FILE);

 // Anything that comes from the pen can be opened as a container

 try {

 Container container = new Container(DATA_FILE);

 // If this container is a document, we can access

 // the document member

 if (container.IsDocument()) {

 PrintReadAFDInfo(container.Document);

 }

 // If this container is a penlet, we can access

 // the penlet data member

 if (container.IsPenletData()) {

Developing Desktop Applications

51

 PrintPenletData(container.PenletData);

 }

 container.Close();

 }

 catch (Exception ex) {

 System.Console.WriteLine("Exception: " + ex.Message, "Error");

 }

 File.Delete(DATA_FILE);

 }

 }

 catch (Exception ex) {

 System.Console.WriteLine("Exception: " + ex.Message, "Error");

 }

 finally {

 complete = true;

 }

 }

 // Print AFD information

 private static void PrintReadAFDInfo(Document document) {

 string afdVersion;

 if (document.DocumentInfo.GetAFDVersion(out afdVersion)) {

 Console.Out.WriteLine("AFD Version: " + afdVersion);

 }

 string guid;

 if (document.DocumentInfo.GetGUID(out guid)) {

 Console.Out.WriteLine("GUID: " + guid);

 }

 string author;

 if (document.DocumentInfo.GetAuthor(out author)) {

 Console.Out.WriteLine("Author: " + author);

 }

 Console.Out.WriteLine("Number of pages: " + document.GetNumberOfPages());

 }

 // Print the penlet data files

 private static void PrintPenletData(PenletData penletData) {

 foreach (PenItem penItem in penletData) {

 foreach (AppItem appItem in penItem) {

 foreach (InstanceItem instance in appItem.InstanceItems) {

 foreach(LSFile file in instance) {

 PrintFile(file, "");

 }

 }

 }

 }

 }

Developing Desktop Applications

52

 // Print the director/file structure.

 private static void PrintFile(LSFile file, string spacing) {

 if (file.Exists()) {

 Console.Write(spacing);

 if (file.IsDirectory()) {

 Console.Out.WriteLine("[Directory] " + file.GetFileName());

 foreach (LSFile f in file) {

 PrintFile(f, spacing + " ");

 }

 }

 else {

 Console.Out.WriteLine("[File] " + file.GetFileName());

 }

 }

 }

 }

}

The PrintReadAFDInfo method takes a Document object. It creates a Container

object, using the filename. It then tests whether the contents of the ZIP file is truly

an AFD by calling the IsDocument method. If it is an AFD, then the code gets the

Document property and proceeds to get the AFD's version, Guid, author and number

of pages.

Pages in an AFD

You are probably looking to retrieve something more exciting from your AFD than

just the metadata. You may be interested in retrieving the stroke data! Before

jumping into that stimulating topic, however, let's examine the nature of the pages

in an AFD. Although not complicated, this issue has several ramifications that we

should explore.

An AFD affects pages in three ways:

 Contains the pages that make up a paper product.

 Defines the composition and layout of pages.

 Contains the pattern for each page.

Pattern: Pages and Copies

Let us assume that you are defining a paper product—for example, a short notebook.

You probably wish to produce multiple copies of that notebook. If all copies have the

same pattern, then your user can use her first notebook with no problem. If she

starts writing in a second notebook, however, you smartpen will confuse the strokes

Developing Desktop Applications

53

with strokes from the first notebook. How should you handle this situation? You have

three possible strategies: Retirement, Series, and Completely Unique Pattern.

Retirement

With this strategy, once your user fills up the notebooks, she runs your desktop

application and "retires" all the strokes and penlet data. You can choose to archive

the penlet data for her on the desktop computer. Then you can remove all strokes

and penlet data from the AFD. Now, the user can buy another of your notebooks and

keep writing. Only one notebook will be active at a time.

Series

With this strategy, you create multiple series of your notebook—for instance,

Series A, Series B, Series C, etc. Each series has pattern distinct from the other

series. But within a series, multiple notebooks all have the same pattern. Thus, page

5 of a Series A differs from page 5 of a Series B or a Series C notebook. But page 5

of every Series A notebook has identical pattern.

On the Livescribe Smartpen Platform, a "series" can be represented by the concept

of copy. The values of a Copy property in the Desktop SDK APIs is an unsigned

integer. So, an AFD page specified as Page 5, Copy 0 corresponds to page 5,

Series A in the preceding paragraph. And Page 5, Copy 1 corresponds to Page 5,

Series B. And so forth. Note that Pages begin at 1 and Copies begin at 0.

The entity determined by a Page number and a Copy number is technically called a

page instance. We refer to them more casually as pages, when no confusion would

ensue. For the sake of clarity, you will sometimes see page instance in this manual.

Absolutely Unique Pattern

With this strategy, every copy of a notebook has unique pattern. There are no series.

Each page of each notebook you produce has absolutely unique pattern. The Copy

value identifies each notebook uniquely within its AFD. It serves to distinguish all

Page 5's from each other, and all Page 6's, etc. Obviously, your Copy values will be

as large as the number of individual notebooks you produce. This strategy uses a lot

of pattern.

Page Templates

Within a paper product definition, the layout of graphic images on each page may

not be unique. If you're producing a small notebook, you will probably have just a

left and a right page layout. In that case, you can create a right page template and a

Developing Desktop Applications

54

left page template and apply them throughout the notebook. There's no need to

design a separate page layout for each page instance. Conceptually, a page template

is like a Master Page in Adobe Framemaker and similar desktop publishing products.

Page templates are not a concern when you are retrieving AFDs from a smartpen.

However, they prove very useful if you decide to create an AFD programmatically

from your desktop application.

Retrieving Strokes

If your ZIP file contains an AFD, you can access data for any strokes that users may

have written on the pages. The data describes the timing and geometry of the

strokes.

Your general approach should be as follows:

1. Get the AFD from the smartpen.

2. Create a Container object, and verify that it is a document (an AFD, not

penlet data), and then get the Document property.

3. Call the Document.GetPatternPage method, passing the Page and Copy

values for each page instance. The method returns the appropriate

PatternPage object.

4. In the PatternPage object, get the Pens property, which returns a collection

of StrokeOwner objects. StrokeOwner is a class with a very specific purpose,

which we explain below. It is not the same as an attached smartpen, which is

represented by an object of the Smartpen class.

5. For each StrokeOwner object, get the StrokeCollection object.

6. For each key-value pair in the StrokeCollection object, get the key (the time)

or the value (a Stroke object).

The PatternPage class encapsulates the pattern page that is assigned to a page

instance. It is a very simple class that wraps a dictionary whose values are

StrokeOwner objects. It also implements the IEnumerable interface, so you can

iterate over the StrokeOwner objects with a foreach statement like this.

Developing Desktop Applications

55

foreach (StrokeOwner strokeOwner in patternPage)

 {

 // Process each StrokeOwner object here

 }

The StrokeOwner class represents all the strokes on a pattern page that belong to a

particular smartpen. That is its whole purpose. Multiple smartpens may have written

on a page. This situation can occur if several smartpen users have your penlet

installed. It can also occur if your AFD has Open Paper sections, on which any

smartpen could write, whether it has your penlet installed or not.

The StrokeOwner class derives from the SmartPenInfo class and inherits the

SmartPenId and SmartPenSerial properties. It wraps a strokes collection, returned

by the Strokes property.

The StrokeOwner class derives from the PenInfo class, which has the PenId

property. From the PenId property, we can access the pen serial using the ToString

method. For example: strokeOwner.PenId.ToString().

Using the Smartpen Change List

The approach to stroke retrieval discussed so far requires you to iterate over every

page in an AFD. You can potentially retrieve a large amount of data strokes every

time. In the interest of data efficiency, you may wish to implement an incremental

approach to stroke retrieval. One means to do so is the smartpen change list.

Following is a very basic diagram of the Smartpen Change List hierarchy. Please note

that many methods and properties have been omitted:

Developing Desktop Applications

56

The Smartpen class encapsulates a smartpen attached to the desktop computer. Its

ChangeList property returns the SmartpenChangeList object for the smartpen.

The SmartpenChangeList class encapsulates a change list for the current smartpen.

The StartTime property, which returns the time at which the change list began to

search for changes to penlet data and AFDs. It wraps the ChangeItems collection,

which is returned by the ChangeItems property.

Smartpen

+ ChangeList

+ Update (ref time)

SmartpenChangeList

+ ChangeItems
+ StartTime

LspInfoItem

+ ClassName
+ Guid
+ Pages
+ EndTime

LspInfoItem

+ ClassName
+ Guid
+ Pages
+ EndTime

ChangeItem

+ ClassName
+ Guid
+ Pages
+ EndTime
+ Title

LspInfoItem

+ ClassName
+ Guid
+ Pages
+ EndTime

LspInfoItem

+ ClassName
+ Guid
+ Pages
+ EndTime

ChangeItemPageInfo

+ Copy
+ Page
+ PageAddress
+ EndTime

Developing Desktop Applications

57

To obtain a change list from a specific time, call the SmartpenChangeList.Update

method and pass a time after which you wish to obtain all changes on the smartpen.

This parameter establishes the value of the StartTime property of the

SmartpenChangeList object.

The relevant code snippet looks like this:

 ulong time = 0;// from beginning

 SmartpenChangeList changeList = pen.ChangeList;

 changeList.Update(time);

The ChangeItem class encapsulates an individual change list item. If the change item

is an AFD, it the Pages property returns the collection of PageChangeItem objects.

The PageChangeItem class represents a page instance that has new strokes on it. It

contains the following properties:

Member Description

Copy Useful mainly for passing to the Document.GetPatternPage method.

Page Also passed to the Document.GetPatternPage method. Together the Copy

and Page values determine a page instance.

PageAddress The unique address of a pattern page.
A page address is a 64-bit unsigned integer. Each byte represents one portion
of the address: SEGMENT.SHELF.BOOK.PAGE. Portions of the address are
separated by dots.

Example: 12.10.7.8

EndTime Time of the last stroke on the page instance.

LSDocument Low-level object for manipulating documents. The LSDocument class is defined
in the AFP API.

Stroke Retrieval Example

The following code sample makes use of a smartpen change list when getting an AFD

from the smartpen and then reading stroke information from the AFD. You may wish

to study it carefully.

Developing Desktop Applications

58

The sample "decodes" strokes in the sense that for each stroke, it gets an array of

points. Each point represents the co-ordinates of a vertex of a geometric shape that

abstracts the stroke.

using System;

using System.Collections.Generic;

using System.IO;

using System.Threading;

using Livescribe.DesktopSDK.PenComm;

using Livescribe.DesktopSDK.PenComm.Interop;

using Livescribe.DesktopSDK.PenData;

using Livescribe.DesktopSDK.AFP;

namespace DecodeStrokesForAllAFDs {

 class DecodeStrokesForAllAFDs {

 private static Smartpens smartpens;

 private const string PENCOMM_LOG = "DecodeStrokesForAllAFDs.log";

 private const string DOC_DATA_FILE = "data.zip";

 private static string STROKE_FILE = Environment.CurrentDirectory +

 "\\strokes.txt";

 private static bool foundPen = false;

 private static bool complete = false;

 private static bool errorsOccurred = false;

 // This sample gets strokes from pen and writes them to stroke.txt

 static void Main(string[] args) {

 System.Console.WriteLine("==");

 System.Console.WriteLine("Read strokes written on all paper products" +

 "for a single pen");

 System.Console.WriteLine("Decoded strokes are written to:" + STROKE_FILE);

 System.Console.WriteLine("==");

 System.Console.WriteLine("Waiting for pen.");

 InitializePenCommLib();

 // In Windows, we should avoid ending while a callback is busy. Also, if we

 // haven't found a pen yet, we should give tell user that we're still

waiting.

 while (!complete) {

 if (!foundPen) {

 System.Console.Write(".");

 }

 Thread.Sleep(2000);

 }

 Console.Out.WriteLine("\n<Press a key to continue>");

 Console.ReadLine();

 }

 // Initialize PenComm library

 private static void InitializePenCommLib() {

 smartpens = new Smartpens(true, PENCOMM_LOG);

Developing Desktop Applications

59

 // The Smartpens object keeps track of attach event handlers in

 // PulsePenAttachNormalEvent

 // Create a new callback object for our PenAttachEvent method and register it

 // by adding it to the list of attach event handlers.

 smartpens.SmartpenAttachNormalEvent

 += new Smartpens.SmartpenChangeCallback(PenAttachEvent);

 // Search for any already docked pens

 smartpens.Find();

 }

 // Called when a pen is attached

 private static void PenAttachEvent(Smartpen pen) {

 foundPen = true;

 TextWriter strokeFile = new StreamWriter(STROKE_FILE);

 try {

 System.Console.WriteLine("\nFound Pen: " + pen.PenSerial);

 ulong time = 0; // from beginning

 System.Console.WriteLine("Read change list from pen from time: " + time);

 SmartpenChangeList changeList = pen.ChangeList;

 // Update the change list (which started out empty) so that it contains

 // all the changes since time.

 changeList.Update(time);

 // The changeList contains information (such as end time of the change,

 // notebook guid, unique package name) of data changes made on

 // pen (ChangeItems). Each ChangeItem describes change information for a

 // paper product or penlet.

 System.Console.WriteLine("Decoding paper product:");

 foreach (ChangeItem item in changeList.ChangeItems){

 // If the item change information of a paper product.

 if (!String.IsNullOrEmpty(item.Guid)) {

 DecodeStrokes(pen, item, time, strokeFile);

 if (errorsOccurred)

 break;

 }

 }

 }

 catch (Exception e) {

 HandleError(e);

 }

 finally {

 strokeFile.Close();

 complete = true;

 System.Console.WriteLine("\nComplete: " + (errorsOccurred ? "not " : "")

 + "all paper products processed.");

 }

 }

Developing Desktop Applications

60

 // Decode all the strokes for a particular paper product and write them to a file

 private static void DecodeStrokes(Smartpen pen, ChangeItem item, ulong time,

 TextWriter strokeFile) {

 strokeFile.WriteLine("\n==");

 strokeFile.WriteLine(String.Format("Document: {0}", item.Title));

 System.Console.WriteLine(" " + item.Title);

 // We will extract strokes from pen and store them in a temporary file whose

 // name is based on the paper product name.

 string fileName = String.Format("{0}_{1}", item.Title, DOC_DATA_FILE);

 try {

 // Pen stores strokes in files on pen's flash memory system.

 // The pen uses one file for each paper product: name of the file

 // is the GUID of the paper product. We retrieve the stroke data and

 // store it locally in a temporary file.

 pen.DataGet(item.Guid, 0, fileName);

 // From the data file we create a container and extract a document object

 // from it for easy processing

 Document doc = new Container(fileName).Document;

 // Strokes are organized by pages. Decode strokes for each page.

 foreach (PageChangeItem pageInfo in item.Pages) {

 strokeFile.WriteLine("\n------------------------------");

 strokeFile.WriteLine(String.Format("Copy: {0}, Page: {1}",

 pageInfo.Copy, pageInfo.Page));

 // For each page, we find its unique PatternPage object.

 // The PatternPage is a collection of strokes created by pens.

 PatternPage patternPage = doc.GetPatternPage(pageInfo.Page,

 pageInfo.Copy);

 // Each element of the PatternPage is a StrokeOwner object which

 // contains pen information (such as PenSerial) and strokes created

 // by that pen

 foreach (StrokeOwner penData in patternPage) {

 foreach (KeyValuePair<long, Stroke> keyPair in penData) {

 // Get time at which the stroke was created

 long creationTime = keyPair.Key;

 strokeFile.WriteLine("\nTime ({0}): ", creationTime);

 // A single stroke can contain many points.

 // The pen records up to 70 points per second.

 Stroke stroke = keyPair.Value;

 Shape shape = stroke;

 System.Drawing.Point[] points = shape.GetVertices();

 foreach (System.Drawing.Point point in points) {

 // Write the point of strokes to file.

 // Upper left corner of page is 0,0 with the y coordinate

 // increasing down the page. The unit of measurement is

 // Anoto Unit (au), which are roughly 677 dpi.

 strokeFile.Write(String.Format(" ({0},{1})", point.X,

 point.Y));

Developing Desktop Applications

61

 }

 }

 }

 }

 doc.Close();

 }

 catch (Exception e) {

 HandleError(e);

 }

 finally {

 File.Delete(fileName);

 }

 }

 private static void HandleError(Exception ex) {

 errorsOccurred = true;

 System.Console.WriteLine("Exception: " + ex.Message, "Error");

 }

 }

}

This sample does most of the things we talked about in the preceding sections.

Since we want to retrieve stroke information from the smartpen, we are interested in

AFDs. In the PenAttachEvent method, we test each ChangeItem to see if it is an AFD

by determining if the Guid property is null or the empty string. The code snippet is:

 foreach (ChangeItem item in changeList.ChangeItems) {

 if (!String.IsNullOrEmpty(item.Guid)) {

 DecodeStrokes(pen, item, time, strokeFile);

The strokeFile is the ultimate output of this sample—a file where we will store the

vertex information for all strokes retrieved from the AFD.

The DecodeStrokes method is called with each ChangeItem that is an AFD. The

method body creates an appropriate ZIP filename for each AFD that we request from

the smartpen. Each filename incorporates the AFD's name (item.Title).

 string fileName = String.Format("{0}_{1}", item.Title, DOC_DATA_FILE);

 try {

 // Get data file from pen

 pen.DataGet(item.Guid, 0, fileName);

In your own code, you could further distinguish ZIP files by concatenating the

following:

Developing Desktop Applications

62

 the GUID string of the AFD. The ChangeItem.Guid property returns this

value.

 the time of the change list item. The ChangeItem.EndTime property returns

this value.

The DecodeStrokes method then calls the pen.DataGet method, passing the GUID

of the AFD and the filename where the transferred strokes should be stored.

Since strokes are retrieved from a PatternPage object, we would like to call the

Document.GetPatternPage method. However, that method takes a page and copy

parameter. We must first get these from the Page and Copy property of the

ChangeItemPageInfo object. The collection of PageChangeItem objects for the AFD is

returned by the Pages property of the ChangeItem object. The following code

snippet puts everything together:

 foreach (PageChangeItem pageInfo in item.Pages) {

 strokeFile.WriteLine("\n------------------------------");

 strokeFile.WriteLine(String.Format("Copy: {0}, Page: {1}",

 pageInfo.Copy, pageInfo.Page));

 PatternPage pp = doc.GetPatternPage(pageInfo.Page, pageInfo.Copy);

Now we get the strokes on the pattern page. In this discussion, a high-level diagram

of the objects involved in retrieving strokes might be helpful. Please note that many

methods and properties are omitted.

Developing Desktop Applications

63

Strokes are organized into a collection for each smartpen that wrote on the page.

The StrokeOwner class wraps a collection of Stroke objects. The PatternPage object

wraps a collection of StrokeOwner objects, and the PenData property returns that

collection.

So, for each StrokeOwner object in the PatternPage, we access the dictionary of

strokes (where the key is the time and the value is the Stroke). For each key-value

pair in the dictionary, we get the key and output it to the console as "Time (key):".

Then we get the value and assign it to a Stroke object.

Since a stroke can be considered a shape, we assign the Stroke object to a Shape

variable named shape. Because of the implicit cast in the Stroke class, an

appropriate Shape is automatically created and a reference assigned to shape. (C#'s

implicit casts can be powerful!)

 // Each element of the PatternPage is a StrokeOwner object which

 // contains pen information (such as PenSerial) and strokes created

 // by that pen

PatternPage

+ PenData

LspInfoItem

+ ClassName
+ Guid
+ Pages
+ EndTime

LspInfoItem

+ ClassName
+ Guid
+ Pages
+ EndTime

StrokeOwner

+ PenId
+ Strokes

Stroke

+ ClassName
+ Guid
+ Pages
+ EndTime

Stroke

+ ClassName
+ Guid
+ Pages
+ EndTime

Stroke

Developing Desktop Applications

64

 foreach (StrokeOwner penData in patternPage) {

 foreach (KeyValuePair<long, Stroke> keyPair in penData) {

 // Get time at which the stroke was created

 long creationTime = keyPair.Key;

 strokeFile.WriteLine("\nTime ({0}): ", creationTime);

 // A single stroke is comprised of potentially many points.

 // The pen records up to 70 points per second.

 Stroke stroke = keyPair.Value;

 Shape shape = stroke;

 System.Drawing.Point[] points = shape.GetVertices();

 foreach (System.Drawing.Point point in points) {

 // Write the point of strokes to file.

 // Upper left corner of page is 0,0 with the y coordinate

 // increasing down the page. The unit of measurement is

 // Anoto Unit (au), which are roughly 677 dpi.

 strokeFile.Write(String.Format(" ({0},{1})", point.X,

 point.Y));

 }

.

Once we have a Shape object, we call GetVertices on it. The call returns an array of

C# System.Drawing.Point objects. Then we output the X- and Y-coordinate for

each Point object.

Note: Co-ordinates are in Anoto Units, which are approximately 677 dots per inch.

The origin is at the top-left corner of the page

The Shape class is in the AFP Wrapper API.

Developing Desktop Applications

65

The AFP Wrapper API

The AFP API is a C# wrapper of the Anoto Functionality Platform, which provides low-

level Print and Document calls for your AFP desktop application. The AFP API

provides all the functionality you need, and you can create desktop applications

using only this layer of the Desktop SDK. The Pen Data API and Rendering API,

however, provide convenience classes that can greatly simplify your work. In

practice, your desktop applications will be a mixture of calls into the Pen Data and

Rendering APIs and calls into the AFP API.

Not all low-level classes and functions are mirrored in the higher-level APIs. Our

guiding principle was to create a Pen Data or Rendering API class if it could add

value by simplifying complexity. In cases where no simplification is possible, you will

use the AFP API classes directly.

This section presents the most important AFP classes, including those which provide:

 more powerful functionality than classes in the Pen Data and Rendering API

 basic functionality required by almost any desktop application.

File and Document Access

These classes provide access to AFDs on your desktop computer and the files within

them. They also provide ways to merge AFDs.

LSDocument

The LSDocument class provides low-level access and manipulation of AFDs on your

desktop computer. The corresponding class in the PenData API is Document.

The two classes differ in how they cause AFDs to be loaded into memory on your

computer. The Document class loads all pages of the AFD into memory. The

LSDocument class employs on-demand loading, by which pages are loaded into

memory as they are requested for data access or page rendering. For improved

performance and memory footprint, use LSDocument.

Merging AFDs

Desktop applications generally request smartpen data incrementally—for instance,

using Smartpen.ChangeList. To operate on the smartpen data increments, you will

Developing Desktop Applications

66

probably wish to merge them into a single AFD. The LSDocument.MergeDocument

method enables you to perform merges.

Note: In order for your smartpen data files to merge in an intuitive and convenient

manner, you should choose filenames that indicate smartpen ID, penlet name, and

date of retrieval. Merging becomes a simple process of doing the following, according

to the nature of your data:

 adding new files to a directory tree in the merged AFD (in situations where

older data must be preserved).

 replacing files with identical names (in situations where new data replaces old

data).

LSFile

The LSFile class permits your desktop application to access individual files, either

inside an AFD or on the file system of your computer. The constructor requires the

file path in the AFD or on the file system. Useful methods include: LSFile.Copy,

LSFile.Delete, and LSFile.Move. The Pen Data API contains no corresponding

class.

ContainerStream

The ContainerStream class creates a C# stream. You can then pass the stream to a

reader or writer for reading from or writing to an AFD.

Consult C# documentation from Microsoft if you need more information on C#

streams.

Pages in an AFD

Your desktop application can access the pages in an AFD, using the PageTemplate,

PageInstance, and PageAddress classes in the AFP API. As explained above, a page

template describes a page's characteristics and contains only static information for

the page: the height and width dimensions, graphic images, and static regions. A

page instance represents a physical page: it contains unique dot pattern and

dynamic information such as strokes written with a smartpen and data created by

penlets.

Developing Desktop Applications

67

PageTemplate

In many paper products, such as a notebook, multiple page instances share the

same page template. The high-level Document.Pages property returns a collection

which indicates the template for every page. Several pages can share the same

template. The graphic images and static regions are identical for all pages that have

the same template.

In a standard notebook, for instance, there is a right-hand page template and a left-

hand page template. The Document.Pages property returns a collection of Page

objects, each of which contains references to the appropriate PageTemplate object.

Thus, pages 2, 4, 6 all point to the same PageTemplate object. And pages 1, 3, 5 all

point to the same PageTemplate object.

The Page class in the Pen Data API corresponds to the PageTemplate class in the AFP

API.

PageInstance

You access the strokes and dynamic regions of a page through the page instance. In

the Pen Data API, Document.GetPatternPage returns the appropriate PatternPage

object, through which you can access strokes, for example.

The PatternPage class in the Pen Data API corresponds to the PageInstance class in

the AFP API. Use PageInstance class if you need functionality not provided in the

higher-level class. The PageInstance constructor takes a Copy and a Page parameter,

which are the same as for the Document.PatternPage method.

A page instance is determined by a unique combination of Page and Copy values.

Note that page instances with the same Page value and different Copy values have

the same page template but different dot pattern. For example: Page 5, Copy 0 and

Page 5, Copy 1 have the same graphic images and static regions. However, once a

smartpen user has written on them, they contain different strokes and dynamic

regions (if any). See Pattern: Pages and Copies.

Graphics Collection

Each page template contains a collection of graphic objects used by all its page

instances. The Page object has a RegionCollection property that returns the

Developing Desktop Applications

68

GraphicsCollection object for the page. A GraphicCollection is a collection of

GfxElements.

The Page object has a RegionCollection property and a GraphicsCollection

property. RegionCollection contains a collection of active areas. You can iterate by

using statement like this:

foreach (KeyValuePair<RegionId, Shape> kvp in RegionCollection)

GraphicsCollection contains a collection of graphical objects (such as images). You

can iterate by using statement like this:

foreach (KeyValuePair<GraphicsId,GfxElement> kvp in page.GraphicsCollection)

Actual elements in the GraphicsCollection are GfxImage and GfxDrawingArea

objects. Both the GfxImage and GfxDrawingArea classes, however, have an implicit

cast to GfxElement.

A graphic on a page template is uniquely identified by a 64-bit unsigned integer. Part

of the Graphics ID encodes a z-order for layering of graphics on a page. Fifteen bits

of the Graphics ID are dedicated to the z-order.

One bit of the Graphics ID encodes whether the image is a control. Images that are

identified as controls, can be turned on or off as a group by setting the boolean

DrawControls property of the Renderer object. You can check if an image is a

control or not by setting the Boolean isControl property of the GraphicsId object

associated with the image.

Direction of the GraphicsCollection Z-Order

The z-order of the graphics collection applies to layers of images on a page in a first-

come, first-painted order. In other words, the lowest z-order layer is painted first,

and the highest z-order layer is painted last.

Consequently, the lower z-order layers are conceived of as "farther" from the human

viewer of a screen or printed page. And the higher z-order layers are "closer" to the

human viewer. See Direction of the RegionCollection Z-Order.

Graphics in a paper product must be in the EPS format. The GfxImage class

represents a graphic image on the page. It is associated with an actual graphics file

on the desktop computer file system. You need to create objects of this class when

rendering an AFD page to the computer monitor. The general procedure is as

follows:

Developing Desktop Applications

69

1. Create a GfxImage object and add it to the graphics collection of the Page

object.

2. For each distinct graphic image, add the associated EPS file to your desktop

application's resources.

3. Add a bitmap version of the EPS file, if your desktop application is rendering

pages to the monitor (for example, in a simple page viewer). They are needed

to render the background images.

Static Region Collection

Each page template has a collection of static regions, called RegionCollection.

Static regions are invisible to the smartpen user but are required for the smartpen to

perform an action when the user interacts with that portion of the page. For

example, tapping the smartpen on a region may play an audio file. Static regions

have a location on the page just like a graphic image. Note that a graphic image

usually occupies the same location as a static region, indicating to smartpen users

which portions of the page are "active."

A static region is uniquely identified by a 64-bit unsigned integer. The bits of the

Region ID have various meanings, which are explained in the Region ID page of the

Javadoc for the Livescribe Smartpen Platform in the Livescribe Platform SDK. The

most important portion is the 16 bits containing the Area ID, which provides the

connection between a static region and functionality in the smartpen. Several static

regions can contain the same Area ID, if the penlet should perform the same

functionality for all of them.

Direction of the RegionCollection Z-Order

Part of the Region ID encodes the z-order of regions that overlap on the same

location on a page.

The z-order of a RegionCollection applies to layers of regions directly opposite to

the z-order of GraphicsCollection. Consequently, the lower z-order layers are

conceived of as "closer" to the human viewer of a screen or printed page. And the

higher z-order layers are "farther" from the human viewer. See Direction of the

GraphicsCollection Z-Order

Developing Desktop Applications

70

Stroke Collections and Strokes as Shapes

The StrokeOwner class in the Pen Data API has a Strokes property, which returns

the collection of strokes created by a given smartpen on the current page instance.

Strokes are represented by the Stroke class in the AFP API. A stroke can be

represented as a geometric figure—either a polygon or polyline. A stroke has a

creation time and an X,Y coordinate pair for each vertex of the corresponding

polygon or polyline.

If you wish to retrieve the vertices of the stroke's shape, simply assign the Stroke

object to a Shape variable. The implicit cast in the Stroke class makes this possible.

The shape of a stroke is significant if you wish to perform your own handwriting

recognition on strokes or if you wish to render strokes to the computer monitor.

Intersecting Strokes and Regions

A common task for desktop applications involves determining whether a given region

has strokes in it. For example, a region that acts as a check box would contain

strokes if the smartpen user selected it by writing anywhere in the region.

To determine if a region has strokes, use the RegionCollection,

StrokeCollection, and intersection. The key concept to keep is mind is that regions

and strokes are both geometric shapes. In fact, both are derived from the Shape

class. If strokes were made in a region, then they overlap the same location on the

page. The AFP API provides methods to compute intersections of region and stroke

shapes. If the intersection succeeds, then you know that strokes were made in the

region.

The general procedure is as follows:

1. Get a stroke collection for a page instance (a PatternPage object). See

Retrieving Strokes.

2. Get the appropriate page template (a Page object) associated with the

current pa.

3. Get the RegionCollection for that PageTemplate object

Developing Desktop Applications

71

Note: You must know the structure of the page template and the Region ID

of the region you are interested in. Either you are the designer of the AFD, or

you must communicate with the designer and discover what the different

regions are designed to do. Access to the penlet code is extremely useful.

4. Iterate over the stroke collection. For each stroke:

a. Call the Intersect method on the RegionCollection object.

b. The Intersect method has two out parameters: an array of long named

shapeIds and an array of int named intersectionTypes.

Each long integer in the shapeIds array is the RegionId.longId value for

a region that the current stroke intersects in some way.

The corresponding int of the intersectionTypes array indicates how

they intersection. The available constants are defined in the Intersect

class.

The following code snippet illustrates the way you can go about determining whether

strokes on a page intersect any static regions defined on the page template:

 foreach (KeyValuePair<long, Stroke> kvp in strokeCollection) {

 // Setting up for intersecting stroke with the RegionCollection

 const int MAX_INTERSECTS = 10;

 long[] shapeIds = new long[MAX_INTERSECTS];

 int[] intersectionTypes = new int[MAX_INTERSECTS];

 Shape s = (Shape)kvp.Value;

 int numberIntersects = regionCollection.Intersect(s, out shapeIds,

 out intersectionTypes, MAX_INTERSECTS);

 if (numberIntersects == 0) {

 Console.WriteLine("\n" + s + " did not intersect any shapes");

 }

 else {

 for (int i = 0; i < numberIntersects; i++) {

 string intersectString = "unknown";

 // For each intersection check what type of intersection

 switch (intersectionTypes[i]) {

 case Intersect.IntExternal:

 intersectString = "DOES NOT INTERSECT";

 break;

 case Intersect.IntClip:

 intersectString = "CLIPS";

 break;

 case Intersect.IntInternal1:

 intersectString = "IS INSIDE";

Developing Desktop Applications

72

 break;

 case Intersect.IntInternal2:

 intersectString = "IS ENCLOSING";

 break;

 default:

 intersectString = "THIS SHOULD NOT HAPPEN";

 break;

 } //end switch case

 RegionId regionId = new RegionId(shapeIds[i]);

 // Here we can pass either the long shapeIds[i] or

 // RegionId regionId object(works because of implicit cast)

 Shape intersectedShape = regionCollection.GetReferenceToShape(regionId);

 Console.WriteLine(s + " -=" + intersectString + "=- Id = " +

 regionId.Id + " Shape = " + intersectedShape);

 }// end for

 }// end else

 }// end foreach

For a working desktop application that incorporates this code snippet, see

IntersectionExample.cs in the Samples directory Livescribe Desktop SDK.

 Miscellaneous Utility Classes

You should be aware of certain utility classes in the AFP API that provide various

values that you need in your desktop application. A few of these utilities are:

Metrics

The Metrics class performs conversions between Anoto Units (AU) and universal

standards of measurement, such as millimeters and inches. It also contains

constants for standard page sizes from around the world, expressed in AU.

PenId

The PenId class has various conversion methods. For instance, it converts the 64-bit

Pen ID to a string that represents the unsigned integer. Some classes provide a

PenSerial property for you as a convenience. In other contexts, you will have to use

the PenId class to convert the Pen ID to a string.

Note: You can pass the PenId object to a function that takes a ulong penid. This

can be done because of an implicit cast of PenId to ulong. For example:

Developing Desktop Applications

73

PenId pen = new PenId("XXX");

PageAddress pa = new PageAddress("2208.1.2.2");

lsDocument.SaveStrokes(pa, strokeCollection, penid);

Page Address

A page address is the unique address that identifies the dot pattern used for the

page instance. The Page Address class allows you to manipulate page addresses.

Convenience methods allow you to convert from the 64-bit integer that represents a

page address to a dot-separated address more easily understood by human beings.

A dot-separated address looks like this: 12.10.7.8. That address uniquely identifies

the following page in the Anoto dot pattern:

Segment 12, Shelf 10, Book 7, Page 8

Address Calculations

The PageAddress class has methods for performing addition and subtraction of page

address. These can be useful when determining the number of pages between two

addresses that are in different books or shelves. For instance: the

PageAddress.Subtract method can tell you how many pattern pages exist between

12.10.7.12 and 12.10.8.1.

You can also perform page arithmetic with overloaded + and – operators, as in the

following code snippet:

PageAddress p = new PageAddress("2280.2.1.2");

PageAddress p2 = p + 12;

Validating an AFD

It is a good idea to verify that an AFD you are using is valid before writing a desktop

application to process it. The quickest way to determine validity at edit time is the

following:

1. Open the AFD in the Livescribe Paper Editor.

2. Verify that the properties are set as you expect.

3. Verify that all images display properly.

4. Verify that regions have the Region IDs that you expect.

Developing Desktop Applications

74

5. Examine the Application Mapping to see that the Application IDs are what you

expect.

Creating a Page Viewer

You can create a desktop application that views the pages of an AFD, , using the Pen

Data API and the AFP API. For a basic working page viewer, see

StrokeRendererForm.cs in the Sample directory of the Livescribe Desktop SDK.

You must create bitmap versions of all graphic images that you will be using. Use of

Image Magick and Ghostscript is a good public-license solution to generating bitmaps

from your EPS files. Many proprietary image editors exist that create, edit, layout,

and convert EPS files. Adobe Illustrator is an excellent example of such a tool. Be

sure to choose a tool that supports alpha-blending.

The key to creating a page viewer application is the PenData.Drawing.Renderer

class. Follow these general steps:

1. Create a Document object, passing the path of a ZIP file that contains penlet

data or AFD data.

2. Create a Renderer object, passing the Document object to the constructor.

3. Implement your own onPaint method, which will be called by the system.

a. The PaintEventArgs parameter passed to you by the system will contain

a Graphics object. Call the Save method on that object. It will return a

GraphicsState object.

b. You can call the ScaleTransform method on the Graphics object. Call

other methods on the Graphics object, as needed.

c. Call the Render method on the Renderer object, passing the Graphics

object. This renders the current graphics context to the screen.

d. Call the Restore method on Graphics object, passing the saved

GraphicsState object.

4. In the event handlers for your page viewer's UI controls, set the following

properties of the Renderer object as needed. Their effect will become visible

when the Render method is next called.

Developing Desktop Applications

75

Property Description

PageNumber Integer representing page number of the page instance
currently being displayed by the Renderer object. The

CopyNumber property is 0, by default.

To display another page, set the value to another page
number.

DrawPaper Boolean property that controls the background color of
the page template.

DrawImages Boolean property that controls whether background
iimages from the page template are rendered.

DrawStrokes Boolean property that controls whether any strokes
written on the page instance are rendered.

DrawControls Boolean property that controls whether the images of the
various paper controls are rendered. You will often
choose not to render them, since the penlet that
provides the functionality of the paper controls is not
running on your desktop computer.

Tip 1: Bitmap images must have an alpha channel to take advantage of alpha

blending, provided by the AFP API.

Tip 2: Remember that the z-order of a GraphicsCollection runs in the reverse

direction of the z-order of a RegionCollection. See Direction of the

GraphicsCollection Z-Order.

